室内SO2 NO2 甲醛的吸附材料改性实验研究

VIP免费
摘 要
近年来,随着城市建设步伐的加快,人口密度不断增加,汽车的拥有量不断
上升,人 们在生产生活中不断向外排出废气,致使大气污染严重,使 得 新风不“新”,
即使增加室内新风量,也难以改善室内空气品质。室外空气甚至超过室内空气质
量标准,若向室内直接引入室外空气,不仅不能起到稀释的作用,反而造成空气
品质的进一步恶化。针对这种现实情况,为了保证室内空气品质,有必要进行室
内空气净化,国内外标准提出了环境与室内多种污染气体浓度限值,其中二氧化
硫、二氧化氮和甲醛这三种气体污染严重且对人体健康危害较大,故研究此三种
气体的净化至关重要。不仅于此,考虑普通活性炭吸附反应主要是物理吸附,为
了得到更佳的吸附效果,本 课题经过比较分析和适用性分析,选择并制备KOH 改
性活性炭
本课题首先讨论多种净化技术,活性炭因其比表面积大、吸附容量大、能选
择性吸附二氧化硫和二氧化氮、具有良好的机械强度和均匀的颗粒尺寸、来源广
泛、价格低廉等优势,被认为是最佳室内污染气体吸附剂,采用活性炭吸附的方
式净化二氧化硫和二氧化氮为最佳选择,考虑到活性炭的部分局限性,为了得到
更好的吸附净化效果,本 课题进一步分析改性活性炭,选择并制备KOH 改性活性
炭,之后进行实验研究,并与普通活性炭进行比较;对于甲醛的净化,本课题选
用高锰酸钾球进行吸附实验;待吸附剂选定后,本文对不同吸附质与吸附剂组合
进行反应机理分析,其中考虑到 KOH 活性炭与高锰酸钾球混合物对二氧化硫和二
氧化氮的化学反应,理论分析认为此吸附剂混合物能得到最佳的吸附效果;下一
步建立反应器模型,得出吸附效率、吸附速率方程和吸附等温线的计算方法;最
后,在实验中,分别采用改变气流速度和改变入口污染气体浓度的方法,测试不
同的吸附剂和吸附剂组合的吸附段前后浓度。
经过实验数据分析得出,二氧化硫和二氧化氮对应的最佳吸附剂均为50%体
积分数 KOH 活性炭+50%体积分数的高锰酸钾球,且气流速度越小,吸附效率越高;
入口气体污染物浓度越大,吸附量越大,但是吸附效率不一定提高,因为它和吸
附速率有关。本文还得出了四组不同吸附剂与吸附质的吸附速率方程,其结果表
明50%体积分数 KOH 活性炭+50%体积分数的高锰酸钾球对于二氧化硫的吸附速
率与KOH 活性炭相比并无明显优势,而前者对于二氧化氮的吸附速率与后者相比
略有提高,且不管采用何种吸附剂,二氧化硫的吸附速率大于二氧化氮。本文还
得出了四组不同吸附剂与吸附质的吸附等温线,为了使二氧化硫和二氧化氮满足
国内外标准的最高要求,即小时平均值0.23
/mmg ,得出当吸附剂为KOH 活性炭,
二氧化硫入口浓度须低于19.75 3
/mmg ,二氧化氮浓度须低于0.289 3
/mmg 可以满
足要求;当吸附剂为普通活性炭,二氧化硫入口浓度低于4.166 3
/mmg ,二氧化氮
浓度低于0.24 3
/mmg 可以满足要求。
关键词:室内空气净化 二氧化硫 二氧化氮 甲醛 吸附模型
吸附速率 吸附等温线
ABSTRACT
In recent years, with the accelerating pace of urban construction, the increasing
population , the rising car ownership, people constantly exhaust polluting gases, which
has caused serious air pollution, the so called "fresh air" has not been "fresh" any more,
even if we do ventilation, it is difficult to improve indoor air quality. Sometimes
outdoor air condition even beyond the indoor air quality standards, thus, ventilation can
not meet the dilutive demand by pulling in outdoor air directly, which may deteriorate
the indoor air quality. Regarding this reality, in order to guarantee the quality of indoor
air, many countries have put forward concentration limits of varieties of polluting gases,
including sulfur dioxide, nitrogen dioxide and formaldehyde, these three polluting gases
do great harm to human's health, it is essential to study those three gases’ purification.
The object firstly described many purification technologies, after the analysis of the
applicability and economy, activated carbon was chosen as the best adsorption
purification of sulfur dioxide and nitrogen dioxide , because of the disadvantages of
activated carbon, in order to get a better adsorption purification effect, the object
analyze the KOH modified activated carbon, and compared it with ordinary activated
carbon; as to the purification of formaldehyde, the potassium permanganate ball was the
best choice, then the mechanism analysis of different adsorbate and adsorbent
combinations were made, which took the mixture of KOH activated carbon and
potassium ball into account, the theory analysis showed that this adsorbent mixture had
the best adsorption effect; the next step, the reactor math-physics model was built, there
deduces adsorption efficiency, adsorption rate equation, and the adsorption isotherm ;
Finally, we do experiments by changing the air flow velocity ,or changing the
concentration of polluting gases, then the concentrations before and after the reactor of
different adsorbents were tested and noted down.
Deriving from the analysis of the experimental data, the best adsorbent of sulfur
dioxide or nitrogen dioxide is the mixture of 50% KOH activated carbon and 50%
volume fraction of the potassium permanganate ball, and the lower the gas velocity, the
higher the efficiency of adsorption; the higher the concentration of gas pollutants, the
greater the amount of adsorption. The thesis also calculated four adsorption rate
equations of different sets of adsorbent and adsorbate , and regarding the sulfur dioxide
adsorption rate, the result showed that the mixture of 50% volume fraction KOH
activated carbon and 50% volume fraction of potassium permanganate ball has no
obvious advantages when comparing with KOH modified activated carbon, while
regarding to the nitrogen dioxide adsorption rate, the former is a little better than the
latter, and we got another conclusion, whatever the adsorbent is ,the sulfur dioxide
adsorption rate is greater than nitrogen dioxide. Finally, the thesis also calculated four
adsorption isotherms of four groups of different adsorbents and adsorbents, in order to
meet the highest requirements of the domestic and international standards of sulfur
dioxide and nitrogen dioxide -- the hour-average 0.2 3
/mmg , when the adsorbent is
KOH modified activated carbon, the inlet concentration of sulfur dioxide should be
below 19.75 3
/mmg , the inlet concentration of nitrogen dioxide concentration should be
lower than 0.289 3
/mmg ; when the adsorbent is ordinary activated carbon, the inlet
concentration of sulfur dioxide should be below 4.166 3
/mmg , the inlet concentration
of nitrogen dioxide concentration should be lower than 0.240 3
/mmg .
Key word: indoor air purification, sulfur dioxide, nitrogen dioxide,
formaldehyde, adsorption model, adsorption rate, adsorption isotherm
目 录
中文摘要
ABSTRACT
第一章 绪 论 ........................................................ 1
1.1 课题研究背景 .................................................... 1
1.2 SO2/NO2/甲醛的污染现状与危害 .................................... 4
1.2.1 二氧化硫的污染现状与危害 .................................. 4
1.2.2 二氧化氮的污染现状与危害 .................................. 4
1.2.3 甲醛的污染现状与危害 ...................................... 5
1.3 国内外空气质量标准 .............................................. 5
1.3.1 中国空气质量标准 ......................................... 6
1.3.2 世界卫生组织(WHO)的空气质量标准 ........................ 7
1.3.3 美国空气质量标准 .......................................... 8
1.3.4 综合国内外空气质量标准 .................................... 9
1.4 本课题研究的主要内容 ........................................ 9
第二章 SO2/NO2/甲醛的净化处理技术比较分析 .......................... 11
2.1活性炭吸附净化技术 .............................................. 11
2.2硅胶吸附净化技术 ................................................ 11
2.3 分子筛吸附净化技术 ............................................. 12
2.4 活性氧化铝吸附净化技术 ......................................... 13
2.5活性炭纤维吸附净化技术 .......................................... 13
2.6 活性高锰酸钾球吸附净化技术 ..................................... 14
2.7 TiO2光催化剂净化技术 ........................................... 14
2.8 低温等离子体净化技术 ........................................... 15
2.9多种净化技术比较分析 ............................................ 15
2.9.1 吸附剂性质参数比较 ....................................... 15
2.9.2 吸附剂的吸附量比较 ....................................... 17
2.9.3 吸附剂价格比较 ........................................... 17
2.9.4 最优吸附剂的确定 ......................................... 18
2.10 本章小结 ....................................................... 19
第三章 吸附材料在吸附 SO2/NO2/甲醛中的应用 ......................... 20
3.1 活性炭在吸附 SO2/NO2中的应用 ................................... 20
3.1.1 活性炭吸附 SO2/NO2的机理分析 ............................. 20
3.1.2 改性活性炭的提出及研究进展 ............................... 21
3.1.2.1改性活性炭的提出 ........................................ 21
3.1.2.2改性活性炭的研究进展 .................................... 22
3.2活性炭改性处理及其吸附二氧化硫/二氧化氮机理分析 ................. 22
3.2.1 改性活性炭的选择 ......................................... 22
3.2.2 改性活性炭的制备 ......................................... 23
3.2.2.1 改性用设备和试剂 ...................................... 23
3.2.2.2 改性活性炭的制备方法 .................................. 23
3.3 活性炭改性前后物理和化学特性的测定和分析 ....................... 23
3.3.1 活性炭改性前后物理特性 ................................... 23
3.3.2 活性炭改性前后化学特性的测定与结果分析 ................... 24
3.4 吸附材料吸附 SO2/NO2/甲醛的机理分析 ............................ 24
3.4.1 KOH 改性活性炭吸附 SO2/NO2的机理分析 .................... 24
3.4.2 活性高锰酸钾球吸附甲醛机理分析 ........................... 25
3.4.3 改性活性炭与活性高锰酸钾球共同吸附 SO2/NO2的机理分析 ..... 25
3.5 本章小结 ....................................................... 25
第四章 反应器模型的建立 ............................................ 26
4.1 反应器模型建立的假设 ........................................... 26
4.2 反应器模型的建立 ............................................... 27
4.3 反应器模型分析 ................................................. 27
4.3.1 吸附段速率方程 ........................................... 28
4.3.2吸附效率的计算 ............................................ 31
4.3.3吸附等温线的确定 .......................................... 31
4.4 本章小结 ....................................................... 32
第五章 实验装置与方案 .............................................. 33
5.1 实验装置设计 ................................................... 33
5.1.1 实验空气系统的设计 ....................................... 33
5.1.2 净化试验件的设计 ......................................... 34
5.1.3 实验用气体的设计计算 ..................................... 35
5.2 实验方案 ....................................................... 36
5.2.1 实验目的 ................................................. 36
5.2.2 实验方法及原理 ........................................... 37
摘要:
展开>>
收起<<
摘要近年来,随着城市建设步伐的加快,人口密度不断增加,汽车的拥有量不断上升,人们在生产生活中不断向外排出废气,致使大气污染严重,使得新风不“新”,即使增加室内新风量,也难以改善室内空气品质。室外空气甚至超过室内空气质量标准,若向室内直接引入室外空气,不仅不能起到稀释的作用,反而造成空气品质的进一步恶化。针对这种现实情况,为了保证室内空气品质,有必要进行室内空气净化,国内外标准提出了环境与室内多种污染气体浓度限值,其中二氧化硫、二氧化氮和甲醛这三种气体污染严重且对人体健康危害较大,故研究此三种气体的净化至关重要。不仅于此,考虑普通活性炭吸附反应主要是物理吸附,为了得到更佳的吸附效果,本课题经过比...
作者:牛悦
分类:高等教育资料
价格:15积分
属性:88 页
大小:896.94KB
格式:PDF
时间:2024-11-11