前向离心风机气动噪声控制的数值与实验研究
VIP免费
摘 要
随着国民经济和居民生活水平的快速提高,降低风机噪声对环境的危害越来
越引起人们的强烈关注。本文利用数值模拟技术、响应面优化及实验验证相结合
的方法,开展 T9-26No.4A 前向离心风机的降噪研究工作。主要工作和结论如下:
首先,采用 CFD 软件 Fluent 模拟 T9-26No.4A 前向离心风机内部的三维非定
常粘性流动及其对外辐射的气动噪声。结果表明:风机噪声频谱表现为典型的离
散噪声特性,蜗舌部位是最主要的气动噪声源位置,叶片出口尾迹的周期性冲击
是激发蜗舌处噪声的主要原因。上述结论表明本文研究的风机降噪重点是建立有
效的方法控制蜗舌处的压力脉动从而降低对外辐射噪声的能量。具体的讲,以叶
片-蜗舌间隙和蜗舌的倾斜角度作为控制变量开展该风机的降噪研究。
其次,选取合理的叶片-蜗舌间隙和蜗舌倾斜角的取值范围,基于均匀设计方
法,采用数值模拟获得风机不同的蜗舌倾斜角和叶片-蜗舌间隙下风机气动性能和
气动噪声值,形成 9个样本数据。通过响应面方法对样本数据进行二次回归拟合,
得到两个参数与风机效率和线性声压级之间的近似函数关系,并依据响应面函数
进行风机优化分析。然后采用数值计算方法对优化后风机的气动性能和噪声进行
数值验证。优化结果表明:响应面方法具有较高的预测精度,将可靠的数值模拟
与响应面方法结合起来用于指导离心风机的改进是可行的。
最后,在不同的约束条件和优化目标下得到了 5种离心风机优化方案,并对 5
组优化风机和原风机的气动性能和噪声进行了实验测量。实验数据表明:在叶片
通过频率 773Hz 处,优化后风机的噪声都有不同程度的降低,尤其 4号风机和 5
号风机的降噪效果最为明显,在高效点处基频噪声分别下降了约 4.5dB 和8.2 dB。
可见,选择合理的叶片-蜗舌间隙和蜗舌倾斜角可有效降低该风机的离散噪声。但
是,优化风机模型的噪声总体水平下降不如基频处明显,对于 4号和 5号风机分
别只降了约 1.9dB(A)和2dB(A)。从风机的噪声频谱中发现,频谱中存在几个不随
运行工况变化的峰值频率,与之对应的噪声峰值严重影响了风机的总体噪声水平。
蜗壳结构内腔声模态分析表明这些峰值频率均与蜗壳空腔的固有频率一致,因此
上述峰值噪声是由蜗壳的声腔共振引起,倾斜蜗舌参数的变化对其影响很小,从
而导致了优化风机的总体降噪效果受到限制。
关键词:前向离心风机 气动噪声和性能 响应面方法 实验研究
ABSTRACT
With the rapid development of national economy and people’s living standard,
more and more people strongly concern on reducing the noise. The numerical
simulation technology, the response surface optimization and the experimental method
are employed to control the air noise of the forward centrifugal fan of T9-26No.4A in
this paper. The research works and results are as follows:
Firstly,three-dimensional unsteady viscous flow in the centrifugal fan and the
dipole noise are simulated by using the CFD software Fluent. Numerical results show
that the noise spectrum has the character of discrete noise, and the predominated noise
source locates on the volute tongue. The periodic impingement of the wake flow from
the blade to the volute tongue is the main mechanism of the noise generation. This
implies that the key to controlling the centrifugal fan noise is to reducing the pressure
fluctuation on the volute tongue, Therefore, the optimization of the inclined angle and
blade-tongue clearance is studied to minimize the noise of the fan in the paper.
Secondly,the ranges of the inclined angle and blade-tongue clearance are selected
and then the efficiency and noise level of nine sample fans are obtained by numerical
simulation. After that, the approximate functions, which relate the efficiency and noise
level with the parameters of the inclined angle and blade-tongue clearance, are obtained
by using the response surface method. What is more, the optimal results from the
approximate functions have a good agreement with the results from the numerical
simulation. The above result shows that the response surface method has enough
precision and the combined numerical and optimization methods is available to
conducting the noise control of centrifugal fan, the result of the numerical optimization
should be validated in the next experimental measurement.
Lastly,based on the above work, five fans with different structural parameters
which are decided by different optimal objects are selected. And the experimental tests
on the aerodynamic performance and noise for the original and optimal five fans have
been carried out. The experimental results show that the noise levels at the blade
passing frequency for all the optimal fans have been controlled, and especially, the
noise levels of the optimal fans of No.4 and No.5 have been reduced 4.5dB and 8.2dB,
respectively. Therefore,the optimization of the included tongue is an effective method
to reduce the centrifugal fan noise. However, the reduction of the total noise for the
optimal fans is not as notable as that at the blade passing frequency, merely with
reducing 1.9dBA and 2dBA for the optimal fans of No.4 and No.5, respectively. And
the reason is that there exist some peak values in the noise spectrum which is
independent on the rotating speed of the impeller. What is more, these peak values have
an important effect on the total noise level. The numerical result on the acoustic model
of the centrifugal volute displays that frequencies of the peak values are corresponding
to the natural frequencies of the centrifugal volute cavity, which implies that the peak
value is induced by the acoustic resonance and has a negative effect on the noise control
of the centrifugal fan.
Keywords: forward centrifugal fan ,aerodynamic noise and
performance ,response surface method,experimental study
目 录
中文摘要
ABSTRACT
第一章 绪论 ................................................................................................................ 1
§1.1 课题的背景及意义 ...................................................................................... 1
§1.2 离心风机气动噪声的国内外研究进展 ....................................................... 2
§1.2.1 离心风机气动噪声的频谱特征 ........................................................ 2
§1.2.2 离心风机气动噪声的预测方法 ........................................................ 3
§1.2.3 离心风机气动噪声的控制技术 ........................................................ 5
§1.3 本课题研究目的及主要工作 ....................................................................... 8
第二章 T9-26No.4A 离心风机非定常流动及气动噪声预测 ...................................... 9
§2.1 T9-26No.4A 离心风机结构和运行参数 ....................................................... 9
§2.2 几何模型和网格生成技术 ......................................................................... 10
§2.2.1 离心叶轮 ......................................................................................... 10
§2.2.2 蜗壳 ................................................................................................. 12
§2.2.3 进风口 ............................................................................................. 14
§2.3 非定常流动及气动噪声的数值预测 ......................................................... 16
§2.3.1 湍流模型的选取 ............................................................................. 16
§2.3.2 风机的进出口边界条件 .................................................................. 17
§2.3.3 风机时间步长的确定 ...................................................................... 17
§2.3.4 风机效率的计算公式 ...................................................................... 17
§2.3.5 声源强度的分析及噪声的预测 ...................................................... 17
§2.3.6 风机周围观测点的布置 .................................................................. 19
§2.3.7 计算步骤和收敛标准的判断 .......................................................... 20
§2.4 数值计算结果分析 .................................................................................... 20
§2.4.1 流场分析 ......................................................................................... 20
§2.4.2 声场分析 ......................................................................................... 23
§2.5 本章小结 .................................................................................................... 24
第三章 基于响应面方法的风机气动性能和噪声优化 ............................................. 25
§3.1 响应面方法及 Design-Expert 软件简介 .................................................... 26
§3.1.1 响应面方法 ..................................................................................... 26
§3.1.2 Design-Expert 软件简介 ................................................................... 27
§3.2 倾斜蜗舌的优化设计及优化结果的分析 .................................................. 28
§3.2.1 样本设计 ......................................................................................... 28
§3.2.2 样本数据及结果可靠性说明 .......................................................... 30
§3.2.3 响应面拟合及分析 .......................................................................... 31
§3.2.4 响应面优化及数值验证 .................................................................. 32
§3.3 实验风机的筛选方案 ................................................................................ 33
§3.4 小结 ........................................................................................................... 37
第四章 T9-26No.4A 离心风机实验装置及测试方法 ............................................... 38
§4.1 实验目的及基本要求 ................................................................................ 38
§4.2 实验设备及测量方法 ................................................................................ 38
§4.2.1 实验设备 ......................................................................................... 38
§4.2.2 风机气动性能测量方法 .................................................................. 40
§4.2.3 噪声测量方法 ................................................................................. 42
§4.3 实验误差 .................................................................................................... 43
§4.3.1 误差的定义 ..................................................................................... 43
§4.3.2 误差分类及减小误差的方法 .......................................................... 44
§4.4 本章小结 .................................................................................................... 45
第五章 T9-26No.4A 离心风机实验测量及结果分析 ............................................... 46
§5.1 倾斜蜗舌的加工方法 ................................................................................ 46
§5.2 倾斜蜗舌和风机的装配............................................................................. 47
§5.3 T9-26No.4A 前向离心风机实验结果分析 ................................................. 49
§5.3.1 背景噪声的实验结果 ...................................................................... 49
§5.3.2 原风机性能和噪声的实验结果 ...................................................... 49
§5.3.3 蜗壳结构内腔声模态 ...................................................................... 54
§5.3.4 原风机与 1、2及3号风机性能与噪声特性比较.......................... 57
§5.3.5 原风机与 4号和 5号风机的风机性能与噪声特性比较 ................ 59
§5.4 本章小结 .................................................................................................... 61
第六章 结论与展望 ................................................................................................... 63
§6.1 结论 ........................................................................................................... 63
§6.2 工作展望 .................................................................................................... 63
主要符号 .................................................................................................................... 65
第一章 绪论
1
第一章 绪论
§1.1 课题的背景及意义
随着国民经济和科学技术的快速发展,人们对生活品质的要求越来越高。2008
年10 月1日我国颁布了三套新的强制性标准,对人们日常生活和生产过程中产生
的噪声提出了严格的控制要求[1~3]。近些年来日常生活中的噪声扰民事件日益增多,
比如,家用电器中的空调、风冷冰箱、厨房用的排气风扇、抽油烟机等等,这些
风机所产生的噪声都不同程度上影响了人们的正常生活。此外,根据《中国风机
行业发展分析报告》[4]建议:提高风机的效率和降低风机的噪声,是目前我国风机
行业一项最重要的任务。
图1-1 T9-26No.4A 离心风机结构简图
典型的前向离心风机结构如图 1-1 所示,其工作原理是:轴向流动的气体介质
首先在进风口轴向流入离心叶轮后径向进入离心蜗壳中,其中在叶轮中的气体受
到叶轮叶片的做功同时提升压力和动能。在这个过程中需要注意的是:当气流进
入到离心叶轮时,在叶道内形成非定常流动,而且受到流体粘性、旋转产生的哥
氏力和叶轮叶片及轮盖壁面较大曲率半径的共同影响,气流在叶片吸力面和轮盖
壁面通常很容易形成流动分离现象。分离后的低速流体被叶道内高速主流携带到
叶轮出口形成沿周向和展向都不均匀分布的射流-尾迹流动模式。由于叶轮出口和
蜗舌部位的间隙很小,使得叶轮出口的非均匀气流对蜗舌部位形成强烈冲击,从
前向离心风机气动噪声控制的数值与实验研究
2
而导致蜗舌处声源脉动最为强烈。因此,设计出一种高效率、低噪声的前向离心
风机产品,既要保证风机的性能不变或者提高风机的性能,又要降低其噪声,是
目前一项非常有意义的课题。选取可靠有效的离心风机噪声预测方法,并将之应
用于低噪声前向离心风机的设计是近年来学术界一项迫切的任务。
§1.2 离心风机气动噪声的国内外研究进展
§1.2.1 离心风机气动噪声的频谱特征
风机的噪声主要包括气动噪声和振动噪声。其中,气动噪声通常是风机最主
要的噪声类型,根据其频谱特性可以分为离散噪声和宽频噪声。
图1-2 离散噪声的频谱图
如图 1-2 所示,离散噪声(discrete noise)的特点主要是噪声的频谱具有离散峰
值特性,它是离心式叶轮机械的主要噪声类型。它的形成原因一般认为主要包括
以下两个方面:一是叶轮旋转形成的自身噪声(self-noise);二是旋转叶轮尾迹(蜗
壳,扩压器等)之间周期性作用形成的干涉噪声(interaction noise)。离散噪声的基
本预测模型主要包括:① Lowson 在1965 年发表的自由空间点声源运动公式,此
即叶轮自身噪声的基本模型[5];②Lowson 在1970 年采用 Fourier 级数展开方法分
别推导得到的进口导叶和叶轮(IGV-Rotor)以及旋转叶轮与扩压器(Rotor-OGV)
相互干涉的噪声模型[6]。
一般来讲,离散噪声的基频即是风机的叶片通过频率,它的计算公式如下:
第一章 绪论
3
60
NZ
f
(1-1)
其中:
N
------叶轮的转速;
Z
------叶片数目;
宽频噪声(broadband noise)相对于离散噪声而言,它无明显的峰值特性。它的产
生机理更为复杂,形成的噪声更难控制。这主要由于湍流流动和涡声作用机理的
双重复杂性造成,一般认为宽频噪声的形成原因主要集中在以下几个方面[7]:① 进
气畸变(Inlet flow distortion) ,② 叶顶间隙流动(Tip clearance flow) ,③ 湍流边界
层失稳(Turbulence boundary layer instability) 和④叶片表面涡脱落(Vortex
shedding )。由于宽频噪声的机理比较复杂,因此,其研究主要依赖于实验手段。
目前,采用实验分析得到宽频噪声的半理论半经验模型包括:① Fukano[8]和
Sharland[9]提出的均匀进气模型,②Amiet 湍流干涉模型,③Amiet 尾迹模型,④
Blake 涡脱落模型。
对于涡脱落激发的宽频噪声频率公式如下:
fK
D
(1-2)
其中:
K
--------常数 0.15~0.22;
v
--------叶片相对于气体的速度,m/s;
D
--------叶片在气体进口方向的宽度,m;
§1.2.2 离心风机气动噪声的预测方法
风机气动噪声是由其内部强烈的非定常流动形成,Lighthill声比拟理论将流动
声源分为单极子源、偶极子源及四极子源三大类。其中,单极子源是叶轮体积源,
偶极子源是叶轮和蜗壳壁面气动力源,四极子源是风机内部流动的湍流应力源噪
声。由Lighithill声比拟理论的量纲分析可知,对于低转速的离心通风机,单极子源
和四极子源对该风机总体噪声的贡献值一般远小于非定常气动力激发的偶极子源
噪声,而以往大量的研究也表明作用在叶轮和蜗壳壁面的非定常气动力是离心风
机最主要的气动噪声源[10~11]
摘要:
展开>>
收起<<
摘要随着国民经济和居民生活水平的快速提高,降低风机噪声对环境的危害越来越引起人们的强烈关注。本文利用数值模拟技术、响应面优化及实验验证相结合的方法,开展T9-26No.4A前向离心风机的降噪研究工作。主要工作和结论如下:首先,采用CFD软件Fluent模拟T9-26No.4A前向离心风机内部的三维非定常粘性流动及其对外辐射的气动噪声。结果表明:风机噪声频谱表现为典型的离散噪声特性,蜗舌部位是最主要的气动噪声源位置,叶片出口尾迹的周期性冲击是激发蜗舌处噪声的主要原因。上述结论表明本文研究的风机降噪重点是建立有效的方法控制蜗舌处的压力脉动从而降低对外辐射噪声的能量。具体的讲,以叶片-蜗舌间隙和蜗舌...
相关推荐
-
跨境电商商业计划书模版VIP免费
2025-01-09 26 -
跨境电商方案范文VIP免费
2025-01-09 14 -
创业计划书VIP免费
2025-01-09 18 -
xx生鲜APP计划书VIP免费
2025-01-09 12 -
跨境电商创业园商业计划书(盈利模式)VIP免费
2025-01-09 8 -
跨境电商计划书VIP免费
2025-01-09 13 -
绿色食品电商平台项目计划书VIP免费
2025-01-09 22 -
农产品电子商务商业计划书VIP免费
2025-01-09 8 -
农村电商平台商业计划书VIP免费
2025-01-09 13 -
生鲜商城平台商业计划书VIP免费
2025-01-09 21
作者:高德中
分类:高等教育资料
价格:15积分
属性:73 页
大小:3.71MB
格式:PDF
时间:2024-11-19

