一类偏微分方程解的解析性和唯一性

VIP免费
3.0 牛悦 2024-11-11 4 4 341.53KB 37 页 15积分
侵权投诉
许多偏分方在复域上无穷个整函数解,对些解形式性质的
研究有重义.们在多个支以物理有重的应用(
[6][9][10][14][16])本论文主要研与特殊多项式相联系的一类二阶线
性偏微解的析性性.先,究了与尔多式相系的偏
微分方程得到了其整函数解存在的充分必要条件及其增长性质.其次研究了与
Bessel 多项式相关联的偏微分方程亚纯解的一性问题.
全文共分为四.
章介绍Nevanlinna 理论的知识单记号并叙述了亚纯函数的
唯一性理论和正规族理论的概念结果
研究了如下偏微分方程
22
22
22
(1)(21)(21)0
uuuu
tztz
tztz
αα
∂∂
++++=
∂∂
(2.1.1)
的整函数解在的充分要条件解的增长,其中
α
£
.并证明了以下三
.
定理 2.1.1 1
+
2
α
+
¥
.偏微分方程(1)
£
上有整函数解
(
)
,
uftz
=当且
仅当
(
)
,
uftz
=
( ) ( )
0
,,
n
nn
n
ftzcGtz
α
=
=
(2.1.2)
其中
(
)
,
n
Gt
αGegenbauer 多项式,且满足
lim0.
n
n
n
c
→∞
=
(2.1.3)
定理 2.1.2
(
)
,
ftz
£
上的整函数且满足(2.1.2)(2.1.3)
(
)
,
ftz
λ
满足
2log
()lim.
log1
nnn
n
ordf
c
λ→∞
==
定理 2.1.3
(
)
,
ftz
£
上的整函数且满足(2.1.2)(2.1.3)
(
)
,
ftz
λ
满足
0,
λ
<<∞
f
σ
满足
22
2lim2.
nn
n
enc
λ
λ
λσ →∞
=
第三章们主要研究了偏微分方程
( )
22
22
22
2220
uuuu
tztz
tztz
∂∂
++−=
∂∂
(3.1.2)
的亚纯解在 CM 担三值时的唯一性问题得到了
定理 3.1.5
(
)
,
ftz
(
)
,
gtz
微分方程(3.1.2)非常数整数解,
(
)
ordf
<
(
)
ordg
<∞
f
g
CM
0,1,
fg
研究多项和分担值关的正规族题,到了正规
定则
关键方程 数解 一性 尔多项式 函数
贝塞项式 规族
ABSTRACT
Many nonlinear partial differential equations have infinite entire solutionsand the
study for the form and properties of the solutions has vital significancewhich play an
important role in the application of many branches of mathematics and physics(see [6]
[11][12][16][18]etc)This thesis mainly studies a class of second order linear
partial differential equations relevant to special functionsand get the analytic property
and uniqueness of their meromorphic solutionsAt firsta partial differential equation
relevant to Gegenbauer polynomial is studiedand the sufficient and necessary
conditions for the existence and the growth of its entire solutions are givenNextthe
uniqueness of meromorphic solutions of a partial differential equation relevant to Bessel
polynomial is researched
There are three chapters in this thesis
In Chapter Onethe elementary knowledge and simple marks of the Nevanlinna
theory as well as the fundamental definitions and results of the uniqueness and
normality of meromorphic functions have been introduced
In Chapter Twowe study the entire solutions of the following partial differential
equation
22
22
22
(1)(21)(21)0()
uuuu
tztz
tztz
ααα
∂∂
++++=∈
∂∂
£
(2.1.1)
and give the sufficient and necessary conditions for the existence and the growth of the
solutionsIn this partwe prove three theorems as follows
Theorem 2.1.1 Take 12
α
+
+∈
¥
The partial differential equation (2.1.1) has an
entire solution
(,)
uftz
=
if and only if
(,)
uftz
=
has a series expansion
( ) ( )
0
,,,
n
nn
n
ftzcGtz
α
=
=
(2.1.2)
where
(
)
,
n
Gt
α is Gegenbauer polynomial and such that
lim0.
n
n
n
c
→∞
=
(2.1.3)
Theorem 2.1.2 If
(,)
ftz
is an entire function defined by (2.1.2) and (2.1.3)
then the order
λ
of
(,)
ftz
satisfies
2log
()lim.
log1
nnn
n
ordf
c
λ→∞
==
Theorem 2.1.3 If
(,)
ftz
is an entire function defined by (2.1.2) and (2.1.3)then
the type
σ
of
(,)
ftz
satisfies
22
2lim2.
nn
n
enc
λ
λ
λσ →∞
=
In Chapter Threewe study the uniqueness of the meromorphic solutions of the
following partial differential equation
( )
22
22
22
2220
uuuu
tztz
tztz
∂∂
++−=
∂∂
(3.1.2)
who share three values counting multiplicity and get the following theorem
Theorem 3.1.5 If
(
)
,
ftz
and
(
)
,
gtz
are non-constant meromorphic solutions
of the above differential equation (3.1.2)and
(
)
ordf
<
,
(
)
ordg
<∞
If
f
and
g
share
0,1,
counting multiplicitythen
fg
In Chapter Fourwe discuss the normal families concerning polynomials and
shared values and get two normal criteria
Key Words: Partial differential equation, Entire solution,Uniqueness,
Gegenbauer polynomial, Meromorphic function, Bessel polynomial
Normal families
摘要:

摘要许多偏微分方程在复数域上有无穷多个整函数解,对这些解的形式和性质的研究具有重要的意义.它们在数学的多个分支以及物理学中都有重要的应用(见[6],[9],[10],[14],[16]等).本论文主要研究与特殊多项式相联系的一类二阶线性偏微分方程解的解析性和唯一性.首先,研究了与盖根保尔多项式相联系的偏微分方程,得到了其整函数解存在的充分必要条件及其增长性质.其次,研究了与Bessel多项式相关联的偏微分方程亚纯解的唯一性问题.全文共分为四章.第一章介绍了Nevanlinna理论的基本知识和简单记号,并叙述了亚纯函数的唯一性理论和正规族理论的基本概念和结果.第二章研究了如下偏微分方程22222...

展开>> 收起<<
一类偏微分方程解的解析性和唯一性.pdf

共37页,预览4页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:37 页 大小:341.53KB 格式:PDF 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 37
客服
关注