低风量烧结节能新工艺的研究

VIP免费
3.0 赵德峰 2024-11-11 4 4 7.14MB 55 页 15积分
侵权投诉
低风量烧结节能新工艺的研究
摘要
烧结工序能耗大约占钢铁行业能耗的15%左右,仅次于炼铁工序,居于第二。
烧结工序的节能降耗方法研究主要从两方面入手:一是回收烧结工序产生的各种余
热,二是改善烧结工艺,降低直接消耗的燃料量等。但随着现代化生产流程的逐步
优化和工序能耗的不断下降,节能效果提升空间也越来越小。针对我国而言,烧结
生产大多数采用粗放式,有效抽风量过大,同时风量过大导致烧结风箱内压差过大
加剧了烧结漏风,从而大大增加了风机电耗;另外,对烧结烟气的回收大多数停留
在其显热上,其含有的稀薄可燃气体却鲜有关注,这些气体不但造成环境污染,而
且含有的大量化学能也未得到利用。对于以上问题,本文根据相似原理搭建烧结燃
烧试验台,通过实验的方法,研究了降低有效烧结风量对烧结质量的影响,了解烧
结烟气气体成分变化规律,为开发烧结节能新的途径提供参考;同时结合工程实例
运用热力学分析法对现有生产中烧结工序系统进行计算分析,并比较两种典型的
不同余热回收方案的优劣性,在此基础上提出烧结节能技改建议。研究结果表明:
1)抽风量减少生产中额定风量的20%左右,不影响烧结矿成品率,同时可
以大大降低风机电耗,在这种工况下,烧结烟气中的O2含量降低也比较明显;烧
结初始阶段烟气中的CO含量始终高于其尾端,随着风量的减少有递增趋势,风量
减小额定风量的30%时,烟气中CO含量增加明显,说明烧结过程中不完全燃烧加
剧,该风量可能偏小,这与本试验台存在漏风也有关系;烟气中CO2随着风量减少
逐渐减小而降低,但风量变化对其影响不明显。建议在实际生产中可以烧结有效风
量降低20%,同时把烧结机前段烟气进行再燃烧,使其可燃成分CO的化学能加以
回收利用。
2)整个烧结工序的不完全燃烧及化学反应等热力过程造成的损失最大,
要提高整个烧结工序的效率,首先该环节入手,改善烧结条件;未回收的
烧结气中化学大于其显热热量;余热回收过程中,出口蒸汽参数越高,
化能的品质越高,能量化过程造成的 损越小,应可能提高工质进出参数
化能品质;对于烟气全环的余热回收系统,发电回收方案 经济性优于
热回收。
键词:烧结 风量 烧结烟气成分 余热回收 分析
ABSTRACT
Sintering process consumption accounts for about 15% of the energy consumption
o f t h e s t e e l i n d u s t r y, s e c o n d o n l y t o t h e i r o n - m a k i n g p r o c e s s . M e t h o d s r e s e a r c h f o r
e n e r g y - s a v i n g a n d c o n s u m p t i o n - r e d u c i n g o f t h e s i n t e r i n g p r o c e s s m a i n l y f r o m t w o
aspects: First, recycling various waste heat generated by the sintering process, second is
to improve the sintering process, reducing the amount of fuel consumption directly, ect.
But w i t h t h e mode r n pr o d u c ti o n p roc e s s e s gr a dual o p t i miz e d an d t he p r o ces s e nergy
de c l i n i n g , t h e i m p r o ve sp a ce o f e n e rgy s a v i n g i s g e tt i n g s m al l e r an d s m a l le r. F o r ou
country, most of the sintering production is extensive, effective ventilation is too large,
while the too much air lead to sinter wind box pressure oversize, exacerbate sintering
a i r l e a k a g e , t h e r e b y g r e a t l y i n c r e a s i n g e l e c t r i c a l e n e r g y c o n s u m p t i o n o f t h e f a n . I n
addition, t he majority of sinter ing flue gas recycling stay in its s ensible heat , but the
c o n t a i n e d r a r e c o m b u s t i b l e g a s e s i s r a r e l y c o n c e r n e d , t h e s e g a s e s n o t o n l y c a u s e
environmental pollution, but also contains a large number of chemical energy untapped.
For t h e abo v e pr o b l e ms, t his a r t ic l e i s ba s e d on a si m i l ar p r i n c ip l e t o b u i l d s i n t erin g
c o m b u s t i o n t e s t r i g , t h r o u g h e x p e r i m e n t a l m e t h o d s t o s t u d y t h e i m p a c t o f r e d u c e
e f f e c t i v e w i n d o n s i n t e r i n g q u a l i t y, u n d e r s t a n d c o m p o s i t i o n c h a n g e l a w s o f s i n t e r i n g
f l u e g a s e s , t o p r o v i d e a r e f e r e n c e f o r t h e d e v e l o p m e n t o f n e w e n e r g y s a v i n g
a p p r o a c h e s . A t t h e s a m e t i m e , c o m b i n i n g w i t h e n g i n e e r i n g e x a m p l e s , u s i n g
t h e r m o d y n a m i c e x e r g y a n a l y s i s m e t h o d t o c a l c u l a t e a n d a n a l y s i s s i n t e r i n g p r o c e s s
system of the existing production, and compare the slightly superior of the two kinds of
t y p i c a l w a s t e h e a t r e c y c l i n g s c h e m e , o n t h i s b a s i s , p r o p o s e t e c h n i c a l i n n o v a t i o n
suggestions of sintering energy saving. The study show that:
(1) Ventilation volume reduced about 20% of the nominal air volume of the
production, does not affect the rate of finished sinter, and can greatly reduce electrical
energy consumption of the fan, in this condition, O
2 contained in the sintering flue gas
also can decreased obviously; CO content during the initial stage flue gas of sintering is
always higher than its rear end, and have an increasing trend with the decreasing of the
air volume, when air volume reduced 30% of the nominal air volume, the CO content in
f l u e g a s i n c r e a s e d s i g n i f i c a n t l y , s h o w t h a t i n c o m p l e t e c o m b u s t i o n d u r i n g s i n t e r i n g
process exacerbating, this air volume may be small, also have relationship with the air
lea k a g e of t e st i n g pla t f o rm; C O
2 i n t h e f l u e ga s d ecre a ses a s t h e a i r vol u me r e d uced
gradually, however, the changes of air volume have not obviously influence on it.
Recommends in the actual production can reduce 20% of the effective air volume in
sintering, while take the preceding flue gas of the sintering machine re-combustion
make the chemical energy of the combustible component CO can be recycled.
(2) I n c o m p l e t e c o m b u s t i o n a n d c h e m i c a l r e a c t i o n s w h i c h a r e t h e r m o d y n a m i c
p r o c e s s o f t h e w h o l e s i n t e r i n g p r o c e s s c a u s e a b i g g e s t e x e r g y l o s s , t o i m p r o v e t h e
e x e rg y e f f i c i e n c y o f t h e w h o l e s i n t e r i n g p r o c e s s , f i r s t c o n s i d e r t h e s t a r t i n g f r o m t h i s
a s p e c t , t h a t i s i m p r o v i n g t h e s i n t e r i n g c o n d i t i o n s ; t h e c h e m i c a l e x e r g y o f t h e
unrecovered sintering wa ste gas is much larger than heat exergy of the sensible heat ;
during the waste heat recovery, the higher the outlet steam parameters, the higher the
quality of the conversion of energy, the smaller the exergy loss caused by the energy
c o n v e r s i o n p r o c e s s , s h o u l d b e p o s s i b l e t o i m p r o v e t h e q u a l i t y o f w o r k i n g m e d i u m
import and export parameters and transformation energy; for the full cycle waste heat
recovery system of the flue gas, the exergy economic of the power generation recycling
programs is better than pure heat recovery's.
Ke y w o r d s : s i n t e r i n ga i r v o l u m eg a s c o m p o n e n t sw a s t e e n e r g y
recovery exergy analysis
中文
ABSTRACT
第一 绪论....................................................................................................................1
1.1背景介绍...........................................................................................................................1
1.2 国内烧结工序节能技术概述......................................................................................2
1.2.1 国内烧结余热回收利用技术介绍...........................................................2
1.2.2 国内烧结工序新型节能技术介绍...........................................................4
1.3国外烧结工序节能现................................................................................................5
1.3.1 国外烧结余热回收技术介绍...................................................................5
1.3.2 国外烧结工序新型节能技术介绍...........................................................8
1.4 烧结过程实验方法研究介绍......................................................................................9
1.5 研究内........................................................................................................................11
第二 低风量烧结试验设备与方法...........................................................................13
2.1 实验........................................................................................................................13
2.2 基本假设........................................................................................................................13
2.3 实验原理及条件..........................................................................................................14
2.3.1 烧结基本原理.........................................................................................14
2.3.2 实验台原理及条件.................................................................................19
2.4 实验设备........................................................................................................................22
2.5 小结........................................................................................................................24
三章 低风量烧结试验研究......................................................................................25
3.1 试验准备........................................................................................................................25
3.2 实验过程........................................................................................................................25
3.3 试验结果........................................................................................................................27
3.3.1烧结风量对烧结矿品质的影响..............................................................28
3.3.2 烧结风量对烧结烟气气体成分的影响.................................................28
3.4 小结........................................................................................................................31
四章 不同烧结余热回收方案的热力学分析.......................................................32
4.1 热力学分析法..........................................................................................................32
4.1.1概念..................................................................................................32
4.1.2 的计算方法.........................................................................................32
4.1.3 分析方法.............................................................................................34
4.2 钢烧结工序流计算分析....................................................................................37
4.2.1 钢不1#烧结机热工试数据.................................................37
4.2.1 计算结果及分析.....................................................................................39
4.3不同余热回收方案热力学分析................................................................................42
4.3.1 两种不同烧结余热回收方案介绍.........................................................43
4.3.2 两种回收方案分析的计算.........................................................44
4.3.3 计算流程................................................................................................44
4.3.4 计算结果及分析.....................................................................................46
4.3.5 两种余热方案效分析.........................................................................48
4.4 小结........................................................................................................................48
五章 全文...........................................................................................................50
5.1 全文........................................................................................................................50
5.2 作展望........................................................................................................................51
参考文........................................................................................................................52
第一 绪论
第一章 绪论
1.1背景介绍
“十五”,国家首次把能耗强度和主要污染物排量的减少
济、社会的约指标。根据2005可比价格计算,2010我国单位GDP能耗
1.034吨标煤,比2005降低了19.1%[1],基本实现了预期目标“十五”
提出单位GDP能耗降低到16%目标,实现节约6.7亿吨标准煤[2],节能减
作将着新的挑战
中国是世界最大的钢生产[3]2010炼铁产量量为10.31亿吨
国外产量为4.41亿吨,我国产量为5.90亿吨,大约占57.2%世界及我国铁产量
1-1所示。同时,在我国钢铁业能耗量仅次于电力行业,大约占全国能耗的
12以上,钢铁业能耗的降低对我国能节能减举足轻重意义
1-1 中国及世界铁产量变化
降低单位产品直接消耗的燃料、动力能和及时回收工序中产生的余热资源
前多数钢铁业降低工序能耗的主要手段。但随着现代化工业生产工艺的逐步优
化和工序能耗的不断减小,回收利用各工序生产的余热余能等这些技术日趋成
节能效果提升的空间也越来越小[4],开发、寻找新的节能降耗途径也是当务之急
全国炼铁工序技术指标如1-1所示
1-1 全国炼铁工序技术指标
项目 2004 2005 2006 2007 2008 2009 2010
全国生铁产量,万吨 25185 33741 40416 46944 47100 53400 59022
利用系数,t/m3d 2.516 2.642 2.675 2.677 2.607 2.615 2.589
燃料比,Kg/t 526 522 516 518 532 519 518
炉焦比,Kg/t 427 412 396 392 396 374 369
喷煤比,Kg/t 116 124 135 137 136 145 149
热风温度1074 1084 1100 1125 1133 1158 1160
矿品% 58.21 58.03 57.78 57.71 57.32 57.62 57.41
炼铁工序能耗Kgce/t 466.2 445.71 430.59 426.84 427.72 410.65 407.76
前,炼铁工艺最用的分为种:一是高工艺,产量占92%以上,二是直
原工艺,产量占7%熔融还原工艺,产量占0.5%。在中国,炼铁技
1
摘要:

低风量烧结节能新工艺的研究摘要烧结工序能耗大约占钢铁行业能耗的15%左右,仅次于炼铁工序,居于第二。烧结工序的节能降耗方法研究主要从两方面入手:一是回收烧结工序产生的各种余热,二是改善烧结工艺,降低直接消耗的燃料量等。但随着现代化生产流程的逐步优化和工序能耗的不断下降,节能效果提升空间也越来越小。针对我国而言,烧结生产大多数采用粗放式,有效抽风量过大,同时风量过大导致烧结风箱内压差过大加剧了烧结漏风,从而大大增加了风机电耗;另外,对烧结烟气的回收大多数停留在其显热上,其含有的稀薄可燃气体却鲜有关注,这些气体不但造成环境污染,而且含有的大量化学能也未得到利用。对于以上问题,本文根据相似原理搭建烧...

展开>> 收起<<
低风量烧结节能新工艺的研究.doc

共55页,预览6页

还剩页未读, 继续阅读

作者:赵德峰 分类:高等教育资料 价格:15积分 属性:55 页 大小:7.14MB 格式:DOC 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 55
客服
关注