板式空预器性能研究与分析

VIP免费
3.0 赵德峰 2024-11-11 4 4 3.69MB 75 页 15积分
侵权投诉
摘要
板式空预器由于其优良的换热性能和流动阻力性能,近些年来在石油、化工
等许多行业的烟气余热回收中得到大量应用。但对其流动和传热特性的实验研究,
由于工作量巨大和行业竞争而鲜见报道。本文对板式空预器进行了试验研究和数
值模拟,为其设计和应用提供理论依据。
首先针对平板板式空预器进行试验研究,得出其换热特性关联式和流阻特性
关联式。建立物理模型,利用 Fluent 进行数值模拟计算,模拟结果与实验结果进
行对比,验证了模拟数据的可靠性。
接着,在实验和模拟的基础上,通过增加扰流片,利用数值模拟计算研究其
对换热器性能的影响,发现扰流片对换热器的换热性能有所提高,但增幅不大,
但流动阻力却大大增加,使得换热器的综合性能下降很大,单纯靠增加扰流片来
提升板式换热器性能的效果不是很理想。
在此基础上,从板片本身入手,将平板变为波纹板,对波纹板式空预器板片
结构的主要参数进行数值模拟,研究了波纹倾角、波纹法向节距、波纹高度和板
间距四个因素对板片性能的影响:
a)波纹倾角对于板片的换热性能影响很大,随着波纹倾角的增大,换热性能提
高,阻力损失增加,在波纹倾角 β=45°时换热器具有较优的性能。
b)波纹高度对于板片的换热性能影响也比较大,随着波纹高度的增加,换热性
能提高,阻力损失也增加。对于基准板型,波纹高度 H=10mm 时板片性能较好。
在对压降要求比较苛刻的场合,建议设计较小波纹高度的板片。
c)板间距对于板片换热性能也有影响,在同样的流速下,随着板间距的减小,
板片换热性能增加,同时阻力损失也增加,但换热器的综合性能因子是增加的
换热器在较小的板间下距具有较优的性能。减小板间距还可以使换热面的布置更
加的紧凑,在同一热负荷下换热器的体积更小。对于板式空预器,为防止堵灰要
求有一定宽度的通道。综合考虑实际使用场合,设计较小板间距的板式换热器。
d)波纹节距对于板片换热性能的影响较小,随着波纹节距的减小,板片换热性
能略有增加,但压力损失的增加却非常大。较大一些的波纹节距具有较好的综合
性能。对于基准板型,波纹节距 P=30mm 时板片性能较优。
最后,对板式空预器的适用性,如积灰、磨损、低温腐蚀等问题进行了讨论,
提出了解决方案,为其进一步的应用提供理论指导。
关键字:板式换热器 空预器 准则关系式 数值模拟 平板 波纹板
ABSTRACT
Due to the excellent heat transfer performance and flow resistance performance of
plate air preheater, in recent years it has been widely used in the petroleum, chemical
and many other industries in the flue gas waste heat recovery. However, due to huge
workload and competition in the industry, experimental study of its flow and heat
transfer characteristics rarely reported. This paper studied and simulated plate air
preheaters, and give a design and application of its theoretical basis.
Firstly, research the flat-plate air preheater by experiment, draw its heat transfer
characteristics and flow resistance characteristics of relational. Establish the physical
model, the numerical simulation using the Fluent calculation, simulation results and
experimental results were compared to verify the simulated data reliability.
Then, on the basis of experiments and simulations, by increasing the spoiler, use
numerical simulation to study the performance of the heat exchanger, and found that
spoiler on the performance of heat exchangers has increased, but the increase was not
However, the flow resistance is greatly increased, making the overall performance of
the heat exchanger decreased greatly, simply by increasing the spoiler to improve the
performance of plate heat exchangers effect is not very satisfactory.
On this basis, so from the plate itself, change the flat plate into corrugated plate,
simulation the main parameters of corrugated plate air preheater plate structure, research
the effect of corrugated inclination, corrugated pitch , corrugation height and plate
spacing four factors on the performance of the plate, revealing its inherent laws, and
then guide the engineering design.
a) Corrugated inclination make a big difference to the performance of plate heat
exchanger, with the corrugated angle increases, the heat transfer performance improve,
resistance loss increase. The heat exchanger has excellent performance when the
corrugated angle β= 45°.
b) The height of the corrugated impact plate heat exchanger performance is large
also, with the ripple height increases, the heat exchanger improve. For reference plate
type, when the corrugation height H=10mm, the plate’s performance is better. At
pressure drop requirements demanding occasions, recommend designing smaller ripple
height plate.
c) The impact on plate spacing plate heat exchanger for impact, at the same flow
rate, with the plate spacing decreases, the plate heat transfer performance increased
while pressure loss it increased, but the performance of the heat exchanger is to increase
the factor. Heat exchanger in the smaller distance between the plates has a lower
optimum performance. Reducing the plate spacing of the heating surface can also make
a more compact arrangement, the same heat load heat exchanger smaller. For plate air
preheater, to prevent fouling requires a certain width of the channel. Considering the
actual use situation, the design of the smaller plate spacing to increase the heat
exchanger performance.
d) For the corrugated board sheet pitch of the heat transfer performance is small,
decreases as the ripple pitch, plate heat transfer performance increased slightly, but the
increase in pressure loss is very large. Some larger ripple pitch has good overall
performance. For reference plate type, corrugated pitch P = 30mm better performance
when the plates.
Finally, the applicability of air preheater plate, such as fouling, wear, temperature
corrosion and other issues were discussed, proposed solutions for its further application
to provide theoretical guidance.
Keywords: Plate heat exchanger, Air pre-exchanger, Criteria
relationship, Numerical simulation, Flat plate,
Corrugated plate
目录
摘要
ABSTRACT
第一章 绪论 ................................................................................................................. 1
1.1 前言 ................................................................................................................. 1
1.2 板式换热设备简介 ......................................................................................... 1
1.2.1 板式换热器的发展 ............................................................................... 2
1.2.2 板式换热器的优缺点 ........................................................................... 2
1.2.3 板式换热器的分类 ............................................................................... 3
1.3 板式换热器的研究现状 ................................................................................. 6
1.3.1 板式换热器结构研究 ........................................................................... 7
1.3.2 板式换热器的传热和流动 ................................................................... 8
1.3.3 研究技术拓展 ....................................................................................... 8
1.3.4 换热性能评价 ....................................................................................... 9
1.4 本课题拟完成的主要任务 ............................................................................. 9
第二章 数值模拟的理论基础及方法 ....................................................................... 11
2.1 数值模拟的理论基础 ................................................................................... 11
2.1.1 数值模拟研究 ..................................................................................... 11
2.1.2 湍流研究进展 ..................................................................................... 11
2.1.3 k-ε模型简介 ........................................................................................ 12
2.1.4 数值模拟的方法 ................................................................................. 13
2.2 数值模拟分析介绍 ....................................................................................... 14
2.2.1 模拟结构 ............................................................................................. 14
2.2.2 控制方程 ............................................................................................. 14
2.2.3 网格的划分 ......................................................................................... 17
2.2.4 边界条件及设置 ................................................................................. 18
2.2.5 计算过程 ............................................................................................. 19
2.3 本章小结 ....................................................................................................... 19
第三章 平板板式空预器的性能研究 ....................................................................... 21
3.1 平板板式空预器介绍 ................................................................................... 21
3.2 实验研究 ....................................................................................................... 21
3.2.1 实验介绍 ............................................................................................. 21
3.2.2 实验原理 ............................................................................................. 23
3.2.2 实验结果分析 ..................................................................................... 27
3.3 数值模拟 ....................................................................................................... 29
3.3.1 几何结构 ............................................................................................. 29
3.3.2 传热特性分析 ..................................................................................... 30
3.3.3 阻力特性分析 ..................................................................................... 32
3.4 扰流片影响因素分析 ................................................................................... 33
3.4.1 扰流片对速度分布的影响 ................................................................. 34
3.4.2 扰流片对温度分布的影响 ................................................................. 34
3.4.3 扰流片对压力分布的影响 ................................................................. 36
3.4.4 扰流片对换热器综合性能的影响 ..................................................... 37
3.5 本章小结 ....................................................................................................... 38
第四章 波纹板式空预器模拟分析 ........................................................................... 39
4.1 数值模拟 ....................................................................................................... 39
4.1.1 模拟结构 ............................................................................................. 39
4.1.2 边界条件和设置 ................................................................................. 39
4.1.3 模拟参数 ............................................................................................. 40
4.2 波纹板式空预器流动和换热性能分析 ....................................................... 41
4.2.1 波纹倾角的研究 ................................................................................. 42
4.2.2 波纹高度的研究 ................................................................................. 46
4.2.3 波纹节距的研究 ................................................................................. 50
4.2.4 板间距的研究 ..................................................................................... 54
4.3 本章小结 ....................................................................................................... 59
第五章 板式空预器的适用性分析 ........................................................................... 60
5.1 采用模块化单体设计 ................................................................................... 60
5.2 防止露点腐蚀 ............................................................................................... 61
5.3 防止堵灰和磨损 ........................................................................................... 62
5.4 本章小结 ....................................................................................................... 63
第六章 总结和展望 ................................................................................................. 64
6.1 总结 ............................................................................................................... 64
6.2 展望 ............................................................................................................... 64
符号表 ......................................................................................................................... 66
参考文献 ..................................................................................................................... 67
在读期间公开发表论文和承担科研项目及取得成果 ............................................. 70
致谢 ............................................................................................................................. 71
第一章 绪论
1
第一章 绪论
1.1 前言
近些年来,不论从国际还是国内形势来看,能源利用的局势都相当紧张,随
着人口的增长和工业化水平的不断提高,能源的消耗日趋增加。我国是一个人口
大国,而且正处于工业化快速发展阶段,在所拥有的煤、石油、天然气和核能这
些一次能源中,石油、天然气和核能正逐渐枯竭,目前还没有替代它们的一次能
源,太阳能和热核反应可以作为替补品,但太阳能成本太高,热核反应的许多实
质性的问题还有待解决,所以都没有达到实用阶段。随着一次能源的紧张,价格
的上涨,温室效应的加剧,节能减排问题深受关注。21 世纪以来,我国采取了以
下几个措施来解决能源和环境问题:
一次能源的有效利用,主要是将一次能源高效地转移成二、三次能源;
(1)促进热能利用技术,提高各个阶段的热能利用效率;
(2)能源的供需平衡及改善消耗系统。
(3)以上措施的实质就是热技术。在分析各项技术时,我们将发现热技术是关
键技术之一。
热技术的应用范围十分广泛,在处理能源、环境等问题时,尤其是在废热和余
热的回收利用上,热技术承担着艰巨的任务。石油化工,动力,电子电器,冶金
等行业生产中所产生的大量工业余热直接排出,不仅浪费能源,而且污染环境。
若能将这部分工业余热进行回收利用,既提高了能源利用率、降低了生产成本,
又保护了环境。如对于在工业余热中占据很大比例的各种窑炉的高温烟气余热,
不直接排放而是进行回收利用,将烟气余热用来将助燃空气预热到 300400℃水
平,便可节约燃料 15%25%[1]
1.2 板式换热设备简介
换热器就是主要的一种余热回收设备。它广泛应用于制冷,冶金,动力,石油
化工,医药等行业。目前,换热设备种类众多,设备性能的好坏直接影响到整个
系统的经济性和安全性。统计显示,换热器投资在现代石油化工企业中占到了
设备投资金额的百分之三十到百分之四十。所以换热器的研究一直备受重视。研
究高效可靠的换热设备是能源问题的一个重要解决方法之一[2]
板式换热器是一种高效紧凑的换热设备,相比于传统的管壳式换热器,具有突
出的优点[3]当前板式换热器的市场份额占了 28%仅次于管壳式换热器[4]基于
板式空预器性能研究及分析
2
其传热系数高、易拆洗、结构紧凑等优异的性能,近几十年来得到了广泛的应用
和发展。
1.2.1 板式换热器的发展
1878 年,德国人最早发明了板式换热器,法国人 Malvazin1886 年第一个设计
出了沟道板板式换热器,直到 1932 年,来自 APV 公司的 R.Seligman 博士根据表
面积与体积的关系,即当两者之比的增大,可提高换热效率这一理论,成功设计
出了首台可以进行批量生产的板式换热器[5]。迄今为止,板式换热器已有 80 年的
使用历史,但我国对于板式换热器的研究设计及制造却起步较晚,19 世纪 60 年代
才开始。1967 年,兰州石油机械研究所对其板片形状进行了研究,通过对比六种
不同的波纹板片,发现整体性能最好的板片是人字形的波纹板片,并且他们在 1971
年制造出了我国首台人字形波纹板形式的板式换热器。1983 年,他们组织了关于
板式换热器的大型技术交流会,讨论了板式换热器的制造材料,波纹形式,单个
板片的换热效果以及其应用等方面,促进了板式换热器在我国的发展[6]
国外著名的换热器生产厂家有阿法拉伐(ALFA-LAVAL)舒瑞普(SWEP)公司、
安培威APV公司、基伊埃GEA传特Transter等。国内比较知名的企业
有蓝科高新、兰石换热公司、上海化工机械二厂、四平巨元等。
现在我国板式换热器的制造厂家有两三千家。但总的来说,对于板式换热器
的应用以及制造,我国与国外还有一定的差距,主要体现在板片结构形式少,板
片规格少,对于许多国外的板片结构及形式,大量模仿与复制,板片参数变换对
其性能影响规律掌握还不够。因此,加强对板式换热器的研究很有必要。同时,
我们也应该对板式换热器的各种板片进行系统的研究,确定出一个最佳的使用范
围,不能盲目使用每一种新出现的板片而不加分析。
1.2.2 板式换热器的优缺点
1.2.2.1 板式换热器优点
与壳管式换热器相比,板式换热器不仅有价格低廉,性能优良,等一系列优点
而在制冷空调领域广泛的得到应用。目前,板式换热器已发展成为高效紧凑的换
热设备被广泛地应用于工业生产过程。
与其它类型的换热设备相比,板式换热器的优点主要有以下几方面[7]
(1)与管壳式换热器相比,在同样压差下具有较高的传热效率;
(2)有效传热温差大,因为它可实现完全或接近于理想的逆流换热;
(3)结构紧凑,占地面积小,不需要其他额外的维修场地;
摘要:

摘要板式空预器由于其优良的换热性能和流动阻力性能,近些年来在石油、化工等许多行业的烟气余热回收中得到大量应用。但对其流动和传热特性的实验研究,由于工作量巨大和行业竞争而鲜见报道。本文对板式空预器进行了试验研究和数值模拟,为其设计和应用提供理论依据。首先针对平板板式空预器进行试验研究,得出其换热特性关联式和流阻特性关联式。建立物理模型,利用Fluent进行数值模拟计算,模拟结果与实验结果进行对比,验证了模拟数据的可靠性。接着,在实验和模拟的基础上,通过增加扰流片,利用数值模拟计算研究其对换热器性能的影响,发现扰流片对换热器的换热性能有所提高,但增幅不大,但流动阻力却大大增加,使得换热器的综合性能...

展开>> 收起<<
板式空预器性能研究与分析.pdf

共75页,预览8页

还剩页未读, 继续阅读

作者:赵德峰 分类:高等教育资料 价格:15积分 属性:75 页 大小:3.69MB 格式:PDF 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 75
客服
关注