焦炉尾焦收集手控制系统的研究与设计
VIP免费
I
焦炉尾焦收集手控制系统的研究与设计
摘 要
由于国内大部分的焦化厂生产的自动化控制程度较低,很多仍停留在焦车人工
的识别与定位,存在着严重的安全隐患,在自动化控制管理方面非常落后。本论文
就是要在有炼焦装备的基础上,设计一个尾焦自动收集的系统,这样不仅可以提高焦
炭的生产质量,同时也可以提高生产效率,降低工作劳动,也可以带来更好的经济效益。
(1)本文在详细分析尾焦收集机器人手机构的结构和运动规律基础上,把整个
连杆机构转化为四轴运动控制机构,研究其运动规律和控制方法,提出了运动控制
卡的软硬件的总体结构,并按照结构化和模块化的设计方法,确定了系统的各子模
块的功能。
(2)完成了运动控制卡硬件电路部分的设计。在对 DSP 处理器 TMS320VC33
和PCI 总线及一些重要芯片进行深入研究的基础上,实现了运动控制卡的硬件电路
设计,包括 PCI 总线接口电路、编码器信号采集电路、D/A 输出电路、开关量信号
输入输出电路等,整个电路具有元器件少、结构简单以及成本低的特点。
(3)完成了运动控制卡的驱动程序设计。采用了 WinDriver 进行运动控制卡的
驱动程序开发,并详细介绍了驱动程序的开发流程。
(4)完成了系统调试平台的搭建,然后对运动控制卡的控制性能进行了调试,
调试结果表明本文所开发的运动控制卡能够完成很好的控制效果。
关键词: 收集手;机械手;控制系统;DSP
II
Abstract
Because a big part of domestic of coal carbornization factory production control
degree lower, a lot of still stay around the coke pusher is artificial of identify with the
fixed position, this exists serious hidden trouble , falling behind very much in the aspects
of automating control.And this thesis is based on the existing coke making equip of
Xiangtan steel company, to design a automatic collection system of tailing coke .In this
wany ,not only can raise the production quantity of the coke, also can raise the production
efficiency, lower the work labor, can but also bring the better economic benefit.
(1) This paper analysizes the struct and motion rules of tailing collection system in
coke furnace , converts this struct to 4-anxis motion control system ,studies the motion
control rules and ways, the systematic scheme of the Motion Controller is proposed. The
hardware is separated into independent functional modules, and the functions of each
module are designed.
(2) It finishes the hardware design of the motion control card. Based on the study on
the DSP Processor (TMS320VC33) and PCI bus and some important chips, the hardware
is designed, including PCI bus interface circuit, encoder collection circuit, D/A output
circuit, input and output circuit of switch signal. It has the characteristics of less element,
simple structure and low cost.
(3) It finishes the driver design for the motion control card. It uses Windriver for the
driver design, and introduces the driver design step of the motion control card in detail.
(4)It builds the system debug platform, debugs the performance of motion control card. It
is approvd that this card can get the perfect control effects.
The motion control card has advantages of simple structure, low cost, good
application and so on. If improving this motion control card, it might be widely used in the
control field. It has made a good foundation for designing a commercial open control card.
Keywords: collection-hand,manipulator;Control system ; DSP
I
目 录
摘 要 ··································································································· I
Abstract ································································································· II
第一章 绪 论 ·······················································································1
1.1 课题的研究背景 ·············································································· 1
1.2 课题的研究意义 ··············································································· 2
第二章 收集手控制系统的分析 ································································· 4
2.1 收集手的工作原理和结构设计 ···························································· 4
2.2 结构运动学分析 ·············································································· 7
2.2.1 平动坐标 ·················································································· 8
2.2.2 转动坐标 ·················································································10
2.2.3 时间与参数关系 ······································································· 12
2.2.4 4 坐标轴联动原理 ····································································13
2.3 收集手控制系统的工作原理 ······························································13
2.4 伺服电机控制算法 ··········································································15
2.5 本章小结 ······················································································17
第三章 系统总体方案设计 ······································································ 18
3.1 四轴位置控制系统简介 ····································································18
3.1.1 专用 DSP 运动控制的方案 ·························································· 18
3.1.2 通用 DSP 和CPLD/FPGA 方案 ·····················································18
3.1.3 只采用 CPLD/FPGA 方案 ····························································19
3.2 运动控制卡总体方案设计 ·································································19
3.3 系统硬件设计 ················································································21
3.4 系统软件设计 ················································································22
3.5 本章小结 ······················································································23
第四章 系统硬件模块的设计 ···································································24
4.1 DSP 控制模块 ················································································ 24
4.1.1 芯片选型 ·················································································24
4.1.2 模块总体框图 ·········································································· 26
4.1.3 时钟基准 ·················································································26
4.1.4 地址译码和读写控制 ································································· 27
II
4.1.5 VC33 复位和仿真口 ··································································· 28
4.1.6 FLASH 存储器 ·········································································· 29
4.1.7 数模转换器 DAC7725 ································································ 31
4.2 CPLD 计数模块 ·············································································· 32
4.2.1 EPM7128 介绍 ·········································································· 32
4.2.2 光电码盘原理 ·········································································· 34
4.2.3 光电码盘计数器 ······································································· 35
4.3 PCI 总线接口模块 ··········································································· 37
4.3.1 芯片选型 ·················································································37
4.3.2 PCI 总线接口设计 ······································································37
4.3.3 地址空间分配 ·········································································· 38
4.4 双口 RAM 模块 ············································································· 41
4.5 伺服接口板 ···················································································42
4.5.1 光电码盘输入接口 ···································································· 43
4.5.2 数子量输入输出 ······································································· 43
4.6 控制系统电源模块 ··········································································44
4.7 本章小节 ······················································································45
第五章 运动控制系统软件设计 ································································46
5.1 WDM 驱动程序 ·············································································· 46
5.1.1 驱动程序框架 ·········································································· 46
5.1.2 DriverStudio 驱动开发 ·································································47
5.1.3 驱动程序的安装 ······································································· 50
5.1.4 动态链接库(DLL)··································································52
5.1.5 应用程序访问板卡 ···································································· 56
5.1.6 驱动程序的调试 ······································································· 57
5.1.7 驱动开发注意事项 ···································································· 58
5.2 VC33 程序设计 ···············································································60
5.2.1 指令系统 ·················································································60
5.2.2 集成开发环境 CCS ···································································· 61
5.2.3 公共目标文件格式 COFF ···························································· 61
5.2.4 VC33 程序引导方法 ··································································· 63
5.2.5 C 语言编程和定时中断 ······························································· 66
5.3 本章小节 ······················································································69
III
第六章 系统功能测试 ············································································ 70
6.1 运动控制卡在系统中的应用 ······························································70
6.2 运动控制系统关节调试 ····································································71
6.3 本章小节 ······················································································76
第七章 结论与展望 ··············································································· 77
参考文献 ······························································································ 78
致 谢 ············································································ 错误!未定义书签。
0
焦炉尾焦收集手控制系统的研究与设计
1
第一章 绪 论
1.1 课题的研究背景
焦炭是钢铁工业最重要的工业原料之一。近几年,从总的趋势看,世界的钢铁
产量在增长,焦炭产量也在增长。世界钢、铁、焦炭的增长主要是中国,扣除中国
的增长后,世界其它国家的钢铁产量在增长,但焦炭产量在下降,如下表 1-1 :
表1-1 世界钢、生铁、焦碳产量对比表
2000 年
2001 年
2002 年
2003 年
2004 年
2005 年
钢
84869
85034
90363
96716
105460
110762
生铁
57667
57809
61162
66867
73046
77935
焦碳
33489
34465
35800
39302
42676
46078
由上表可得 2005 年世界钢产量 110762 万吨,比 2000 年增长 30.5%,其中,中
国占 26.06%,其它国家增长 4.46%;同期世界生铁产量 77935 万吨,增长 35.15%,其
中,中国占 34.23%,其它国家增长 0.92%;而同期的 焦炭产量 46078 万吨(预计)增
长33.6%,其中,中国占 35.13%,其他国家减产 1.53%。也就是说,近五年,除了
中国外,世界其他国家钢、铁产量分别增长 4.46%和0.92%,而焦炭产量下降 1.53%。
世界钢、铁、焦炭的增长主要是中国。2004 年中国焦碳产量 20618 万吨,其中出口
1501 万吨,是名副其实的焦碳生产大国,正在向焦碳冶炼强国迈进。
然而,由于我国炼焦行业生产技术和环境治理与世界先进水平存在着较大差距,
焦碳质量有待提高。中国钢铁工业协会副秘书长、中国炼焦协会理事长黄金干近日
指出,由于技术上的差距,焦炭强度不高、灰分偏大,尤其是土焦和小焦产品比重
过大,致使我国的焦炭消耗水平偏高,化工产品回收水平低,焦炭出口在国际市场
上往往是以数量规模和低价格参与竞争。同时,技术含量和附加值不高,造成我国
宝贵资源及能源的极大浪费[1]。近年来,西方一些传统产焦国迫于环保、资源、售价
等压力,其产量和出口量日趋萎缩。面对国际、国内炼焦工业的现状,我国为确保
焦炭产品稳定的出口强势,以及在国际市场上树立起焦炭产品的良好形象,已积极
采取措施,全力展开了对炼焦行业的结构调整和环保治理。
在这里有必要先对焦炭生产的过程做一介绍,炼焦就是将焦煤置于在密闭的焦
炉炉室内经过 14-18 个小时的干馏后得到红焦,随后通过焦炉的移动机车将红焦从炉
室移出送到熄焦室进行熄炭。整个过程中共使用的焦车有推焦车、拦焦车、熄焦车
和装煤车。具体步骤是:当焦炭已经炼成后,推焦车打开炉室机侧的炉门,拦焦车打
开同一炉室焦侧的炉门并把导焦栅插入炉室中,熄焦车位于拦焦车下侧准备接焦,
当三车都已准备就绪后,推焦车开始进行推焦操作,将红焦推到熄焦车的熄焦罐中,
焦炉尾焦收集手控制系统的研究与设计
2
由熄焦车运送到熄焦室;此后装煤车从焦炉炉室顶部的装煤口对空的炉室进行装煤,
同时平煤杆会对炉室的煤堆平煤。在实际的焦化厂现场中,粉尘,腐蚀性气体较多,
环境比较恶劣,焦炉四车的动并不像上面所述的那样简单。特别是在冬季和雨季,
出焦时火焦的高温将产生大量的水蒸气,进一步影响了现场操作人员的视线。加之
车辆分散,活动频繁,运行时自身震动大,使系统的准确检测与控制难以保证,相
互间信息联系不能及时而可靠的传递。而推焦车、拦焦车和熄焦车在推焦操作前的
对正锁定于同一炉室(以后我们简称为“三车对正”。)对焦炉的安全生产是至关重要,
因为三车对正偏差而导致“红焦落地”的严重事故在国内外也是屡见不鲜的.另外,焦
炉一般使用年限较长,焦炉老化是普遍存在的问题,随之带来炉室弯曲变形等问题,
使得焦车的停车对正精度需进一步提高,根据目前国内焦炉的具体情况,± 10mn。
的对正精度是比较适中的。当前,存在炼焦生产中不利因素主要有以下几点[2]:
1).粉尘大、腐蚀性气体严重,环境温度高,环境恶劣;
2).车辆分散,活动频繁,运行时自身震动大;
3).车辆定位难,准确率低;
4).信号屏蔽和无线通讯干扰大;
5).焦炉的孔数不同;
6).焦炉的结焦时间不同;
7).炉龄不同,新旧炉同时使用;
8).焦炉的推焦计划编制不同;
9).推焦车,拦焦车,熄焦车对正不精确;
10).采用交流载波方式实现大车连锁,可靠性差,操作时耽误时间;
11).人工编制推焦计划浪费时间,不精确。
总之,国内大部分的焦化厂生产的自动化控制程度较低,很多仍停留在焦车人
工的识别与定位,存在着严重的安全隐患。在自动化控制管理方面非常落后,本文
就是要通过在湘钢现有炼焦装备的基础上,设计一个尾焦自动收集的系统,这样不仅
可以提高焦炭的生产质量,同时也可以提高生产效率,降低工作劳动,也可以带来更好
的经济效益。
1.2 课题的研究意义
作为湖南省支柱企业之一的湘潭钢铁集团公司随着工业的发展,每年对焦炭的
需求量都在增加。如何在原有设备的基础上,提高焦炭产量、质量和降低能耗,是
该公司,也是国内外同行企业所面临着思考的问题。解决这个问题的途径之一是——
如何采取有效的方法处理尾焦。目前国内大多是采用人工将尾焦重新铲入炭化室内,
再次进行冶炼。这种处理方法缺点是不仅增加产品(焦炭)成本,还降低了焦炭产
焦炉尾焦收集手控制系统的研究与设计
3
量和质量,而且增加能耗;另外,还会造成焦炉炭化室炉墙局部温度过高,形成石
墨,致使推焦时因增加挤压损坏炉墙。既增加焦炉热修频次,又缩短焦炉寿命。因
此,正确地处理好焦炉尾焦的收集工作,意义重大[1-2]。
本设计的主要目的就是要在参考大量文献资料的基础上,结合湘潭钢铁集团焦
化厂的工况实际,采用工业机械手技术,提出一种优化可行的尾焦收集手装置的方
案,并且初步实现对收集手总体结构及其驱动系统的进行总体规划、驱动系统的各
组成部分的设计、收集手整机运行轨道的设计,以改善现场操作环境、减轻操作人
员劳动强度、提高焦炭质量,从而克服以上提到的人工铲焦回炉的诸多缺陷。
同时,尾焦收集的技术攻关,曾在国内许多焦化厂做过攻关尝试,都做得不是
很成功,主要是尾焦收集过程自动化程度不高,在收集过程中仍存在诸多问题,如
卸焦和即时熄焦的操作时间控制不当,焦碳损失和质量变差、 现场操作环境没有得
到根本改善、操作人员劳动强度仍然较大等。所以在以前研究的基础上,改进收集
装置,在延长焦炉寿命、增加焦炭产量和提高经济效益上有着非常重要的意义。
焦炉尾焦收集手控制系统的研究与设计
4
第二章 收集手控制系统的分析
收集手的设计,主要是根据生产的具体要求来收集手方案的设计。由于使用的
场合和工作要求的不同,其结构和类型亦各不相同,本章根据具体的工况条件,结合
设计的要求,合理的选择和确定收集手的坐标型式、基本参数、机械结构、驱动方
式和以及控制方式并确定收集手的传动方案,然后把系统和控制策略转化为运动机
构和电机控制,对运动机构和电机控制的基本理论进行深入研究[3]。
2.1 收集手的工作原理和结构设计
焦炉尾焦收集系统,旨在完成炭化室炉门开启和推焦过程所遗留于炉门外的红
焦收集、转运、熄焦和最终收集。系统由轨道、尾焦收集手、液压系统、水冷循环
湿熄焦系统、动力源、电控操作柜等部分组成。其中尾焦收集手的主要目标就是自
动并且充分的收集尾焦,并将尾焦转移到熄焦车内[1]。
我们拟定的尾焦收集系统就是要在湘刚钢原有设备的基础上提高其焦炭的产量,
质量和降低能耗,其中尾焦收集机械手的工况现场则是湘钢焦化厂的推焦车上。(见
图1)由于每炉产生的尾焦大约在 40 千克左右,所以我们拟定设计的机械手收集箱最
大收集量设计为 50 千克即可。在湘钢的现场考察我们发现推焦车顺利完成一次推焦
过程的时间大约为 8分30 秒。
图2-1 收集手的工况现场——推焦车
摘要:
展开>>
收起<<
I焦炉尾焦收集手控制系统的研究与设计摘要由于国内大部分的焦化厂生产的自动化控制程度较低,很多仍停留在焦车人工的识别与定位,存在着严重的安全隐患,在自动化控制管理方面非常落后。本论文就是要在有炼焦装备的基础上,设计一个尾焦自动收集的系统,这样不仅可以提高焦炭的生产质量,同时也可以提高生产效率,降低工作劳动,也可以带来更好的经济效益。(1)本文在详细分析尾焦收集机器人手机构的结构和运动规律基础上,把整个连杆机构转化为四轴运动控制机构,研究其运动规律和控制方法,提出了运动控制卡的软硬件的总体结构,并按照结构化和模块化的设计方法,确定了系统的各子模块的功能。(2)完成了运动控制卡硬件电路部分的设计。在...
相关推荐
-
跨境电商商业计划书模版VIP免费
2025-01-09 27 -
跨境电商方案范文VIP免费
2025-01-09 14 -
创业计划书VIP免费
2025-01-09 18 -
xx生鲜APP计划书VIP免费
2025-01-09 12 -
跨境电商创业园商业计划书(盈利模式)VIP免费
2025-01-09 8 -
跨境电商计划书VIP免费
2025-01-09 13 -
绿色食品电商平台项目计划书VIP免费
2025-01-09 22 -
农产品电子商务商业计划书VIP免费
2025-01-09 8 -
农村电商平台商业计划书VIP免费
2025-01-09 13 -
生鲜商城平台商业计划书VIP免费
2025-01-09 21
作者:韩鲁英
分类:高等教育资料
价格:150积分
属性:84 页
大小:3.78MB
格式:PDF
时间:2024-09-24

