CO2常规工质空调热水联合系统的实验研究

VIP免费
3.0 陈辉 2024-11-19 14 4 4.19MB 83 页 15积分
侵权投诉
CO2/常规工质空调热水联合系统的
实验研究
由于自然工质CO2作为制冷剂替代具有良好的前景,而跨临界CO2热泵热水器
在制热、供热水方面又十分高效,以及常规工质空调器还将继续使用一段时间
(至少几十年),本文针对以上现状,设计了一套CO2/常规工质空调热水联合系
统,可回收房间空调器夏季制冷排放的冷凝热用于制取生活热水,能实现夏季供
冷、冬季供热、全年提供生活热水的功能,提供了五种运行模式:制冷+供热水、
+供热水、单独制冷、单独制热、单独供热水。
本文还设计了一个用于跨临界CO2热泵系统的气体冷却器,这是一个壳管式
换热器,采用不锈钢材料,以满足系统对承压的要求。跨临界CO2热泵系统的管路
全部用不锈钢材料,并用球面连接加四氟垫片进行密封。
本文给出了联合系统的具体连接方式和运行工况的原理图,整个联合系统由
空调热水系统、跨临界CO2热泵系统、冷却水系统和冷冻水系统等子系统组成。
对联合系统进行了各种工况的实验测试。通过实验可知,室外环境温度对制
冷和加热热水的效率起着很大的作用,提高室内环境温度,可有效增大空调热水
系统的COP值,室外环境温度通过影响空调热水器的压缩机排气温度而影响系统
制热水的效率。空调热水器夏季同时制冷制热水时,综合性能系数可达6.0以上。
过一次加热工况、循环加热工况、变冷却水温度工况、变冷冻水温度工况等实验可
知,跨临界CO2热泵系统制取热水时,提高蒸发温度或降低热水温度都能增大系
统的COP值,提高水侧的流量也能有效提高系统性能系数。无论什么工况下运行,
压缩机的吸气温度基本都稳定在15℃20℃,而压缩机的排气温度和压力则会随
蒸发温度、热水温度的升高而提升,水流量对排气温度和排气压力基本没有影响。
本文所设计的联合系统与当前家庭单独购置的空调器和热水器相比具有显
的节能效果。夏季回收冷凝热,增大了系统的综合性能系数;全年使用联合系
或单独使用跨临界 CO2热泵供热水,都比电热水器或燃气热水器节能并节省费用。
关键词: 跨临界 CO2热泵 空调热水器 联合系统 冷凝热回收 气体冷
却器
ABSTRACT
On the basis of the natural refrigerant CO2 seemed as alternative to conventional
refrigerants, and trans-critical CO2 heat pump water heater is very efficient in heating
and hot water heating, as well as the conventional refrigerant air conditioner will
continue to use at least several decades, a CO2/conventional refrigerant air-conditioning
water heater integrated system is designed in this paper, condensing heat can be
recycled to supply hot water in summer while the air-condition works. There are three
function can be achieved, refrigeration in summer, heating in winter and water heating
all year-round. In summary, there are five kinds of operation modes implemented:
cooling and hot water supplying, heating and hot water supplying, cooling, heating and
hot water supplying.
A gas cooler for trans-critical CO2 heat pump water heater system is also designed
in this paper. It is a shell and tube heat exchanger, made of stainless steel to meet high
pressure requirements of this system. The piping system of trans-critical CO2 heat pump
water heater consists of stainless steel piping, the spherical connection with the plus
PTFE gasket seal ensures good sealing pipeline.
The schematic diagram of the specific connections and the operating conditions
of integrated system is introduced in this paper. The integrated system consists of three
subsystems: air-conditioning hot water subsystem, trans-critical CO2 heat pump
subsystem, cooling water subsystems and chilled water subsystem.
A variety of working conditions for the integrated system is experimental tested.
Through experimental research, it can be known that outdoor ambient plays a big role in
enhancing the efficiency of refrigeration and hot water heating. Improving indoor
ambient temperature will increase the COP value of air-conditioning water heater.
Outdoor ambient temperature affects the air-conditioning compressor discharge and
suction temperature, thereby affecting the efficiency of the system.
The IPLV of the heat pump water heater will get to 6.0 while cooling and hot
water supplying in summer. Increasing the evaporation temperature or lower hot water
temperature can increase the system COP value, while trans-critical CO2 heat pump
working to supply hot water. And improving the flow of the chilled water or cooling
water can be also effectively improving the system performance factors.
Whatever the operating conditions running, the compressor suction temperature
basically stable at 15℃~20. The improving of the evaporating temperature or hot
water temperature will lead to the increasing of compressor discharge temperature and
pressure. While water flow no effect on compressor discharge temperature and pressure.
Compared to air conditioners and water heaters separately purchased by current
family, the integrated system is significant energy-saving. Recovery of condensing heat
in summer increases the coefficient of comprehensive performance. Supplying hot
water by trans-critical CO2 heat pump is energy saving compared to electric water
heater or gas water heater.
Key words: trans-critical CO2 heat-pump, air-conditioning water
heater, combined system, condensing heat recycle, gas cooler
ABSTRACT
第一章 绪论..............................................................................................................1
§1.1 课题研究背景...........................................................................................1
§1.1.1 制冷剂替代......................................................................................1
§1.1.2 建筑节能..........................................................................................3
§1.1.3 多功能联合系统的提出..................................................................4
§1.2 国内外研究现状.......................................................................................5
§1.2.1 超临界二氧化碳换热国内外研究现状..........................................5
§1.2.2 二氧化碳热泵国内外研究现状......................................................7
§1.2.3 多功能联合系统国内外研究现状..................................................7
§1.3 本论文的研究内容及意义.......................................................................9
第二章 CO2/常规工质空调热水联合系统的理论分析........................................11
§2.1 CO2物性特点分析..................................................................................11
§2.2 超临界 CO2对流换热性分析.............................................................13
§2.2.1 超临界 CO2对流换热............................................................13
§2.2.2 超临界 CO2的换热关联式............................................................14
§2.3 跨临界二氧化碳循环.............................................................................17
§2.4 常规工质空调热水器的工作原理.........................................................18
§2.4.1 常规空调热水器的四种工况........................................................19
§2.4.2 常规工质空调热水器理论计算公............................................20
§2.5 CO2/常规工质空调热水联合系统的工作原理.....................................20
§2.6 本章小结.................................................................................................22
CO2/常规工质空调热水实验系统的设计................................................23
§3.1 实验.................................................................................................23
§3.2 CO2/常规工质空调热水联合系统的设计.............................................24
§3.2.1 气体冷却器的设计及 CO2热泵其余选型........................24
§3.2.2 常规空调热水器............................................................................32
§3.2.3 水循环管路的设计........................................................................33
§3.2.4 温水的设计............................................................................34
§3.2.5 ....................................................................................35
§3.3 实验环境简介.........................................................................................36
§3.3.1 实验室的组成和功能....................................................................36
§3.3.2 实验室环境的................................................................37
§3.4 实验测量.........................................................................................38
§3.4.1 温度的测量....................................................................................38
§3.4.2 压力的测量....................................................................................39
§3.4.3 流量的测量....................................................................................40
§3.4.4 ................................................................................42
§3.5 本章小结.................................................................................................42
第四章 实验数据处理和分析................................................................................43
§4.1 实验内容.................................................................................................43
§4.2 常规工质空调热水器单独运行.............................................................45
§4.2.1 单独制冷........................................................................................45
§4.2.2 制冷+制热水..................................................................................46
§4.2.3 单独制热水....................................................................................47
§4.2.4 单独制热........................................................................................51
§4.2.5 空调热水器系统运行性及影响因素........................................52
§4. 3 跨临界 CO2热泵单独制热水................................................................52
§4.3.1 一次加热工况运行........................................................................53
§4.3.2 循环加热工况运行........................................................................58
§4.3.3 系统运行性能及影响因素............................................................61
§4. 4 CO2/常规工质空调热水联合系统合运行........................................61
§4.4.1 联合系统合运行制热+制热水..................................................62
§4.4.2 联合系统性能分析........................................................................63
§4.4.3 联合系统的经济性分析................................................................64
§4. 5 系统及部................................................................................65
§4. 6 本章小结................................................................................................66
第五章 论与展望................................................................................................67
§5.1 .........................................................................................................67
§5.2 本论文创新点.........................................................................................68
§5.3 展望.........................................................................................................68
符号表.....................................................................................................................69
参考.................................................................................................................71
第一章 绪论
第一章 绪论
§1.1 课题研究背景
§1.1.1 制冷剂替代
随着人类的增加,自然环境受到影响越来,并渐反作用
二十世纪七八十年代以全球
反思,节能和环保已经成为二十一世纪最受题。关于消耗臭
物质的蒙特利尔议书》《京书》协议签订标志着全界各国政府
应付环境题的制冷冻冷)和热泵调和热泵热水
等)系统大量使用的制冷剂CFCs HCFCs 利昂成温室
元凶。而随着活水提高,制冷与热泵
求量年增加,就迫求制冷与热泵采用工质替代对环
破坏的氟利昂类制冷剂。因此寻求高效、绿色制冷工质成为当前国际社
同关焦点界各国的科学紧张研究替代工作。
当前HFCs 组成
工质(二氧化碳、丙烷等)。HFCs 物质然对氧没有影响,是也有一
定的 GWP 值(全球变暖潜能值)。大多数合成物质然现在没有发现对环境的
作用对环境是影响间的。而然工
质本身就于自然环不会对环外的作用
主席 Lorentzen 然工质制冷剂的最终解决案”
§1.1.1.1 温室效
二氧化碳、水蒸气、全氟烃类等气体能让太阳短波光受阻碍地通过,使
加热,而长波射被反射以冷却。气体拦截反射
,使地表气温到入射到上的太阳能和被地空间能量
平衡的温度,大气的这作用温室当的温室对于
必需的,果没有温室效平均气温-18℃,而实际地表平均
气温为 15℃,即地球大气的温室效可使面的气温增加 33[1]
温室会给人类来负影响:全球气温升高、冰川
化、海平面上升、中纬地区候干旱化等一系列问题将随1992 6
1
CO2/常规工质空调热水联合系统的实验研究
巴西里约热内召开的联合国环境与发会上 160 个国家的元首
首脑签署变化框架公约》最终目的是将大气温室气体的量稳定在
系统受到危害上。1997 12 ,在召开联合国气变化
框架公约》5缔约国会上,签署《京书》Kyoto Protocol)。该议
书 确 认 了 温 室 气 体 对 全 球 气 变 化 的 影 响 , 明 确 CO2CH4甲 烷
N2OSF6PFCCFCsHCFCs
HFCs烃类)等温室气体范围,并要求发达国家首先将温室气体的排放量冻
20 90 2008-2012
温室气体排放量削减 5.2%
§1.1.1.2 层破坏
保护臭的全球合作1985 保护臭层维纳公约协商缔结。在
联合国环境规划署倡议下,签署了关于损耗臭物质的《蒙特利尔议书》
该议1989 11生效。《蒙特利尔议书》规定:1990 年起,各缔约
应根据已获得科学环境、技术经济资料,四年对规定的措施进行
对于家,要求2016 起,HCFCs 量和量冻2015
年的费水上,2040 年全部淘汰 HCFCs
1999 北京修正案决定:2004 年,发达国家将HCFCs 1989
年生上,并在以可以生不超过15%满足国内基
求;2016 年,发国家将HCFCs 2015 年生费水
上,并在以可以生不超过15%满足国内基本求。
§1.1.1.3 制冷剂替代的迫切
1755 William Cullen [2]
250 多年间,制冷物质合成物质到天然物质的
。二年代人类为发利昂作制冷剂呼雀,在
个多世纪在制得到大量用;然而人们一定
世纪利昂发现坏人境的去寻
的制冷剂,而的制冷剂——自然工质人们视野有一
已经开始得到应用并青睐
在制冷剂方面然还矛盾。一方面是良好物性的合成
2
第一章 绪论
物质却不;一方面是环的自然工质,于提高制
系统的效率,制冷系统有很高的要求,使制冷系统的制本大
提升。不过温室效已经日出大自然对到人类
的不耐烦常的气,以及如冰化、海平面升高等严峻现实
威胁人类的生环境,使人们审视
制冷剂的替代其中最紧课题,在经济和可前,
人们选择艰难好在各国政府已经要性纷纷
制定了 CFCs HCFCs 利昂退史舞的时间,在这一过内,将
允许使用制冷剂,的制冷剂管现在有
发出了一相对、具有良好热力性能的合成制冷剂,成物质还
是有的,过时间的;而自然
过大自然选已性,因此自然工质的制冷剂,作
为替代工质有良好的前景。
§1.1.2 建筑节能
正处城市建设飞速展期,建筑能的比
加大,当前国的这一比西方发达国家(30%左右
相比国的建筑还很低,无论是单筑面人均建筑
是建筑能的比,还一个远远。随
生活水的提高,国的建筑能将会有显的增
从表 1-1、图 1-1、图 1-2 [3]可以出,与西方发达国家相比,国的建筑能
还有很大的提升空间。达国家的可知,为
室内热湿环境所的采、通和空调能耗约65%,各类商
建筑的生热水能耗约15%,用于建筑物采空调和热水的能
全国能的 25%左右,这一领域在节能要性显而易见[4]
1-1 2004 年各要国家建筑的比 (单万吨准煤
国家 国 加OECD Europe
建筑162082 46361 5737 9606 9924 37909 4388 3574
634838 150883 19488 58618 35361 122966 17982 19382
建筑25.5% 30.7% 29.4% 16.4% 28.1% 30.8% 24.4% 18.4%
3
CO2/常规工质空调热水联合系统的实验研究
187
202
178
146
30
0
50
100
150
200
250
国 加西
kWh/m2·年)
1-1 2003 界各国建筑单年能
16030
18206
5219
743
412
420
2572
0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000
国 加欧洲 巴西 中
kWh/(·)
1-2 2003 要国家年人均建筑能
当前界各国所还是以一次能的常规能
一次能人类不可能长期依赖它上个世纪 70 年代石油
人类认了节能与要性。空调和热水是能
的大因此提高这一率,技术
意义。
是在这种整个会都筑能下,将空调热泵和
水供系统综合成一个联合系统的了出,这种方式可以有效回收空
的冷凝排热用于提供生活热水,同时用热泵提供热水也比当前的电热水器、燃
热水器等节能,多功能系统的研究和受到越来越多的关
§1.1.3 多功能联合系统的提出
前国内家庭使用的热水要是电热水器、燃气热水器太阳能热水器
4
摘要:

CO2/常规工质空调热水联合系统的实验研究摘要由于自然工质CO2作为制冷剂替代具有良好的前景,而跨临界CO2热泵热水器在制热、供热水方面又十分高效,以及常规工质空调器还将继续使用一段时间(至少几十年),本文针对以上现状,设计了一套CO2/常规工质空调热水联合系统,可回收房间空调器夏季制冷排放的冷凝热用于制取生活热水,能实现夏季供冷、冬季供热、全年提供生活热水的功能,提供了五种运行模式:制冷+供热水、制热+供热水、单独制冷、单独制热、单独供热水。本文还设计了一个用于跨临界CO2热泵系统的气体冷却器,这是一个壳管式换热器,采用不锈钢材料,以满足系统对承压的要求。跨临界CO2热泵系统的管路全部用不锈...

展开>> 收起<<
CO2常规工质空调热水联合系统的实验研究.doc

共83页,预览9页

还剩页未读, 继续阅读

作者:陈辉 分类:高等教育资料 价格:15积分 属性:83 页 大小:4.19MB 格式:DOC 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 83
客服
关注