发散光束照射下的颗粒散射测量技术

VIP免费
3.0 牛悦 2024-11-11 4 4 10.72MB 75 页 15积分
侵权投诉
摘 要
采用 Mie 散射理论的小角向散射颗粒测量技,是目前应用最为广泛的
散射颗粒测量技术。随着科学技术的不断发展,细微颗粒的应用越来越多,为
足生产实践对细微颗粒的测量要求,研究人员在传统前向光散射法基础上不断
善和创新。在这些基于前向光散射法的颗粒测量技术中,均采用平行光照射的
射模型或者会聚光照射的散射模型。平行光照射散射模型即传统的傅里叶变换
统(CFS,具有测量区范围大的优点,但是由于接收透镜焦距不可能很小,因此
测量下限受到限制。会聚光照射散射模型即逆傅里叶变换系统(RFS)中,等效焦距
可以很小,因此可有效降低测量下限,但是当样品池与探测器间隔很小时,两
表面的反射对测量结果影响较大。广义傅里叶变换颗粒测量技术(GFS)采用发散高
斯光束作为入射光,是一种新的颗粒测量方法,是对前两种技术的补充。
本文提出广义傅里叶变换系统光线传播计算模型,利用光线法推导了球形颗
粒散射光信号在探测平面的空间分布表达式。测量了不同的光束发散角和不同
测量区厚度情况下探测器上的散射光信号分布,利用反演算法从散射光信号测
值中提取出颗粒粒径分布信息,并与传统的傅里叶变换系统(CFS)结果比较。
文还对多分散颗粒系进行了研,对比了多分散系和单分散系中,对于同一种粒
径颗粒的测量结果的一致性。广义傅里叶变换系统光路简洁、结构简单、结果准确
具有潜在的应用价值,为光散射颗粒测量技术提供了一种新手段。
本文主要分为两大部分:理论部分和实验部分。第一章主要介绍了颗粒测量
和在线测量的重要性,以及基于前向光散射颗粒测量技术的发展与现状,并介
了广义傅里叶变换颗粒测量技术的背景和本文的研究内容;第二、三章为理论
分,介绍了散射光能颗粒测量技术的基本知识,阐述了广义傅里叶测量技术的
线传输模型,并进行了模拟计算,分析了该模型在不同装置参数下的理论计算
果;第四、五章为实验部分,搭建了广义傅里叶变换颗粒测量技术的实验平台
并进行了实验研究。在实验中,考虑了单模光纤激光器和接收透镜等装置的工
原理及特性参数,描述了本套实验平台的实验测量结果并对实验结果分析。第
章阐述了全文工作的总结和展望。
以上模拟和实验结果证明广义傅里叶颗粒测量技术理论模型,能够有效地进
行颗粒测量。
本论文工作由上海市教委创新目(12ZZ136资助
关键词:颗粒测量 小角前向散射 Mie 散射 发散高斯光束
ABSTRACT
Particle measurement technique based on forward light scattering with Mie theory
has been the most widely used light scattering particle measurement technology. With
the development of science and technology, more and more fine particles are on the
application. In order to meet the requirement for the measurement of fine particles,
researchers unceasingly consummate and innovate the traditional forward light
scattering method. In these techniques, the collimated beam and/or convergent beam are
often used as the incident beam. The former is known as conventional Fourier system
(CFS)which has the advantage of large measurement range. However, the lower size
of particle is limited as the focal length of lens cannot be too short. The latter is called
reverse Fourier system (RFS), whose measurement limit can be reduced effectively
because the equivalent focal length can be very small. The negative effects are caused
by the disturbance from the light reflection between the surfaces of the sampling cell
and the detector. The Generalized Fourier system (GFS), which employs a divergent
Gaussian beam scattering model, is a new particle measurement technique and the
supplement for the above mentioned two methods.
In this paper, the theoretical model of GFS is presented. Analytical expressions,
based on the ray propagation, are deduced to describe the scattered light distribution on
the detector. Particle size distributions are extracted from the measurements by using the
inverse algorithm under different optical arrangements and these results are compared
with those obtained from the conventional Fourier system (CFS) technique. The poly-
disperse system is also studied to test the consistency with the mono-disperse system for
a fixed particle size. The method of GFS has several advantages such as simple optical
setup and structure, accurate result and so on, so it has potential application values
which provide a new method for light scattering technique.
In this paper, the details are presented in both theory and experiment. In chapter 1,
the development and present status of particle measurement technique based on forward
light scattering and the backgrounds of the GFS are introduced along with the
significance of the particle and the on-line measurement. Chapters 2 and 3 are the
theoretical parts, which briefly introduce the concept of the particle measurement
technology based on light scattering, present the theoretical model of the GFS, calculate
and analyze the scattered light distributions under different setups. Chapters 4 and 5 are
the experimental parts, in which the experimental setup is constructed and experimental
study is performed. The operating principle and the characteristic parameter of the
single-mode fiber laser and the receiving lens, the experimental results and the relative
discussion are also described in this part. In chapter 6, the work in this thesis is
summarized and the perspectives are also presented.
Simulation and experimental results show that the theoretical model of the GFS
can be used for particle measurement effectively.
The work in this thesis is supported by the Innovation Program of Shanghai
Municipal Education Commission (IPSMEC 12ZZ136).
Keywords: particle analysis, forward light scattering, Mie scattering,
divergent Gaussian beam
目 录
中文
ABSTRACT
第一章........................................................1
1.1 颗粒测量与在线测量的重要性...................................1
1.2 基于前向光散射法的颗粒测量技术...............................2
1.2.1 传统前向光散射颗粒测量技术................................3
1.2.2 基于前向光散射法的颗粒测量技术的发展与现状...............4
1.3 课题的提出及本文的工作.......................................8
1.3.1 课题的提出...............................................8
1.3.2 本文工作.................................................8
第二章 光散射颗粒测量技术的基础知识...............................10
2.1 颗粒大小及分布的概念.........................................10
2.2 颗粒粒度的表方法..........................................10
2.2.1 单个颗粒的粒径..........................................10
2.2.2 颗粒系的粒度分布........................................11
2.2.3 颗粒系的平均粒度........................................12
2.3 Mie 散射和 Fraunhofer .....................................13
2.3.1 Mie 散射理论.............................................13
2.3.2 Fraunhofer 射理论.......................................15
2.4 平行光照射的散射模型........................................18
2.5 会聚光照射的散射模型........................................19
2.6 小结........................................................20
第三章 广义傅里叶变换系统光线传输计算模型.........................21
3.1 高斯光束不同介中的传播规律................................21
3.2 广义傅里叶变换系统的理论模型................................22
3.2.1 发散光束照射下的散射模型................................22
3.2.2 GFS 光线模型............................................23
3.2.3 数值计算结果分析........................................28
3.3 结论........................................................31
第四章 广义傅里叶变换系统颗粒测结果.............................32
4.1 概........................................................32
4.2 实验装置................................................32
4.2.1 发散光束装置............................................33
4.2.2 接收透镜................................................35
4.2.3 待测颗粒及样品池........................................36
4.2.4 探测器..........................................37
4.2.5 信号采系统............................................38
4.3 颗粒测试....................................................38
4.3.1 背景光的测试............................................39
4.3.2 实验测量结果............................................39
4.3.3 理论与实验值比较......................................44
4.4 小结........................................................47
第五章 广义傅里叶变换系统反演结果.................................49
5.1 概........................................................49
5.2 Chahine 算法和影算法.......................................49
5.2.1 Chahine 算法.............................................49
5.2.2 投影算法................................................50
5.3 反演计算....................................................52
5.4 小结........................................................63
第六章 总结及展望.................................................64
6.1 本文工作总结和主要结论......................................64
6.2 后续工作的展望............................................64
参考文献..........................................................66
第一章
第一章 绪 论
1.1 颗粒测量与在线测量的重要性
颗粒是一种然界产中广泛接和应用物质,以多种
在,可以是液体液滴气体)或微小固体状)以是
具有命力的细和微生等,颗粒粒径的分布特性对物质的形及性能有着
接的系。
1) 颗粒在线测量在粉末冶金的应用
粉末冶金是制造金属材料复合材料以及品的工技术,以金属
金属粉末金属非金属粉末混合物作为原
冶金中,粒度对粉末形和产品的最着重要的作用。
粒度过粗解离粒度细,导致
送困颗粒小到一定程度时性能会因为效应的作
生变。有些情况下,粒决定冶金成的性能,例如,当滤材料
颗粒为球状时,可用式表示粉末颗粒粒径 与过滤精度 间的 [1]
1.1
由此可知,粒度的在线测量是产品性能的,在粉末冶重要
的。
2) 颗粒在线测量在水检测方面的应用[2]
随着活水平的不断提高,的要越来越高。但是,颗
粒状杂质包括病往往中,如兰伯氏鞭毛虫隐孢子
原性体长约2~8m,能够虫病果不对这些颗粒进行
测和制,危害健康,因此对中微粒的测量就显得至关重要。
情况下,都需要进行在线的,以合格,但是
正常工作的过过滤颗粒大小大多在 10m以下。传统方法采用
仪无获得水中微粒的粒径,中颗粒是物质也无判别
粒测量的方法可以中颗粒粒径分布以及度,描述中微
量来纯净度,比传统的更直观、科学。
3) 颗粒在线测量在水泥的应用
水泥,是可以在无机胶凝材料,并可
材料牢固结在一根据研究显示,在熟料已经的情况下,水泥
性能由粒径决定
1
发散光束照射下的颗粒散射测量技术
对于 1m以下的颗粒,在和搅拌过程完全水化,对贡献
量越高,能量浪费越多;
对于 1m~3m的颗粒,该量越高,天强度越高,但需水
增加,这样导致性能下降。因此,证三满足要求的前提
下,该分颗粒应减少
对于 3m 以上的颗粒,一般认十八天强度主要由 3m~32m颗粒
3m~16m量越高,则熟料作用,可以
材料32m上,64m
水化较低,这样熟料,该分越多,多,因
此,应可能降低该量。
由此,对水泥颗粒的实时在线测量是分重要的。之外,微米级
粒的在线测量在涂料装行非矿陶瓷稀土石油化工行
品行和生医疗有着很重要的应用,对善产量、制产品
能、保障身健康全球气象以及生等有着重大的经济意义和深远
[3~12]
不同测量原理形了多种颗粒测试仪器,包括动态散射粒粒度
电阻法颗粒计数器、颗粒图像测量激光粒度[13~18]对于微米级颗粒的
测量动态光散射粒度测量范围主要米级降法、电阻法和
颗粒图像仪动范围不够,例如水泥的粒度分布动态范围可达到 1000:1 以上。激
光粒度根据光散射法而成的,具有测量测量范围大等
特点,因此广泛应用于微米级颗粒的测
然而,随着科学技术和生产工的进,细微颗粒的应用越来越多,传统
量颗粒的激光粒度仪已足不了实践的要求,降低测量下限以扩宽测量范
为研究的重点。
1.2 基于前向光散射法的颗粒测量技术
当光束在传播时,光沿直线传播,在颗粒,
将偏原来的传播路径向四散射,透射于入射光的衰减、散射
的空间分布等与颗粒的粒径密切相关这些参以作为测量颗粒粒径的
依据。光散射法因以能够在测量方法中脱颖出,在很
广泛应用。
激光粒度基于光散射现象而设计的,激光光束照射到颗粒时,光束向四
散射,散射角(散射光传播方向与入射光传播方向间角)的大小与颗粒
2
第一章
径有接的系。随着颗粒粒径的小,散射角随对数增加散射光强也和颗
粒粒径有大颗粒散射光分布较,但光;小颗粒对应大散射角,但是
度小,如图 1-1 所示激光光束不同粒径的颗粒时,散射光会在不同的
置,颗粒粒径的大小即可以散射光的置信息以及度信息反出来。
Laser
Large Particle
Laser
Small Particle
1-1 大小颗粒的散射现象示意图
1.2.1 传统前向光散射颗粒测量技术
前向散射法是目前应用最广泛发展一种光散射颗粒测量方法,是
测量颗粒在前向角度范围内的散射光能分布,并从散射光能分布信息中
颗粒的粒径信息。早期的前向散射式激光粒度是建Fraunhofer射理论的
基础上的,测量下限2m。为了降低测量器的测量下限,传统前向散射
式激光粒度均采用Mie散射理论代替Fraunhofer射理论[19]
传统前向散射式激光粒度CFS)原理如图1-2所示,该系统包括三部分:
1)发射:由器和一个
光作为入射光束;
2)样品承载装置:测颗粒均地分散在知的分散中;
3)接收装置:是系统的关键部分,由傅里叶透镜和光探测器组成
傅里叶透镜是平行光经过透镜会聚在焦平面时无像差的透镜。探测器
是一探测的面
从里到对数大,探测器于透镜的焦平面。激光粒度的光学结构
3
摘要:

摘要采用Mie散射理论的小角前向散射颗粒测量技术,是目前应用最为广泛的光散射颗粒测量技术。随着科学技术的不断发展,细微颗粒的应用越来越多,为满足生产实践对细微颗粒的测量要求,研究人员在传统前向光散射法基础上不断完善和创新。在这些基于前向光散射法的颗粒测量技术中,均采用平行光照射的散射模型或者会聚光照射的散射模型。平行光照射散射模型即传统的傅里叶变换系统(CFS),具有测量区范围大的优点,但是由于接收透镜焦距不可能很小,因此测量下限受到限制。会聚光照射散射模型即逆傅里叶变换系统(RFS)中,等效焦距可以很小,因此可有效降低测量下限,但是当样品池与探测器间隔很小时,两个表面的反射对测量结果影响较大...

展开>> 收起<<
发散光束照射下的颗粒散射测量技术.doc

共75页,预览8页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:75 页 大小:10.72MB 格式:DOC 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 75
客服
关注