化学链燃烧双流化床反应器内流动与传热的数值模拟

VIP免费
3.0 牛悦 2024-11-19 4 4 3.97MB 118 页 15积分
侵权投诉
摘 要
化学链燃烧技术(Chemical Looping Combustion, CLC)是一种新颖的燃烧技术,
由于具有较高的燃烧效率、彻底消除了NOX污染物的排放以及CO2内分离不需消耗
额外能量的特点而受到了国内外广泛的关注。目前,化学链燃烧能源动力系统已
成为世界能源与环境系统研究的重要方向,它的理论、实验研究及工程应用对于
减少NOX污染物的生成和CO2的排放以及燃料的高效燃烧具有重要的意义,是解决
节能与CO2减排主要发展的先进技术之一。
本课题基于 Linux 操作系统的联想深腾 1800 并行计算平台,运用计算流体
学软件 Fluent6.3 软件,以欧拉-欧拉多相流模型、颗粒动力学理论和气固非均相化
学反应动力学为基础,对化学链燃烧反应装置—空气与燃料流化床内气固两相流
动、传热及化学反应过程进行 CFD 数值模拟与分析,相关结论将为化学链燃烧过
程中气固化学反应特性的研究提供参考依据。
本文首先通过查阅相关文献,确定了研究所需的化学链燃烧的实验装置,
立了合理的气固流动、传热及化学反应动力学模型,并嵌入自行编写的气固非
相化学反应、相间传质及反应放热的UDFUser Defined Model用户自定义函数)
程序,通CFD数值模拟计算了燃料反应器内流动与传热的过程,并与文献中
实验数据进行了验证,结果表明与二者有着较好的一致性。
模拟计算与分析了甲烷进气速度为0.1m/s、颗粒进口速度为0.015m/s时燃料反
应器内流动、传热的情况,得到了燃料反应器内载氧剂颗粒体积分率的分布、
固相速度矢量场、气固相温度、气固反应物及生成物浓度分布场等规律。
计算并对比分析了甲烷进气速度分别为0.075m/s0.12m/s0.15m/s颗粒
口速度为0.015m/s时燃烧反应器内流动与传热的情况,得到了甲烷进气速度对化学
链燃烧反应器内流动、传热、化学反应速率及燃烧效率的影响规律。
计算并对比分析了在甲烷进气速度为0.13m/s,颗粒进口速度为0.075m/s/
均粒径分别为0.00015m0.00022m0.00035m三种载氧剂颗粒对化学链燃烧气固
流动及化学反应速率的影响规律,分析了提高甲烷燃烧效率的方法。
模拟计算并分析了化学链燃烧空气反应器-
(氧气)进行气固相氧化反应的过程,得到了载氧剂颗粒体积分率的分布、气固
相速度矢量场、气固相温度、气固反应物及生成物浓度分布场等规律。
最后对化学链燃烧空气与燃料反应器的串行反应过程进行了数值模拟,这样
从理论上有机地将二者的流动与传热过程联系了起来,为以后化学链燃烧整个氧
化还原反应过程的实验研究和模拟计算提供理论依据。
关键词:化学链燃烧 流化床反应器 气固非均相反应 欧拉-欧拉多相
流模型 载氧剂颗粒 数值模拟
ABSTRACT
Chemical looping combustion (CLC) has been concerned world-widely, because it
is a novel combustion process with higher combustion efficiency, inherent CO2
separation without NOx and extra energy losses. Recently, the energy and power system
of chemical looping combustion has been one of the important research fields of the
world-wide power and environment system. Its theoretical, experimental researches and
engineering applications will be helpful to the elimination of emission of NOx
pollutions, the reduction of CO2emission and the higher fuel combustion efficiency, as
one of the key and advanced technologies for energy-saving and reduction of CO2
emission.
Choosing Computational fluid dynamics software Fluent 6.3 as the flow solver on
the Linux based Lenovo parallel computing system, the Eulerian-Eulerian multiphase
fluid model, kinetic theory of granular and the kinetic model of the gas-solid
heterogeneous chemical reactions were used to simulate and analyze the characteristics
of gas and solid flow, heat transfer and chemical reactions in the air and fuel reactors of
chemical looping combustion. The related conclusions will be used as the references for
the numerical study of gas-solid chemical reactions characteristics of the chemical
looping combustion process.
In this paper, lots of related references of the chemical looping combustion have
been reviewed, and the chemical reaction reactors were found, the reasonable models of
the gas-solid flow, chemical reactions and heat transfer process were built, and the UDF
(User defined Function) programs on the chemical reactions kinetic model, the mass
and heat transfer between gas and solid phase were added in the Fluent 6.3, the
PC-SIMPLE method and the standard
k
dispersed turbulent model were adapted ,
the gas-solid flow process and chemical reactions of the chemical looping combustion
in the air and fuel reactors were modeled.
Simulation results were compared with the experimental data. The comparison
shows that the results of numerical simulation were in good agreement with
experiments. With the numerical simulation, the solid volume fraction distribution,
composition profiles of gas reactants and products, temperature distributions of gas and
solid phases and chemical reaction rates in the fuel reactor were obtained.
Firstly, the gas-solid flow and heat transfer processes in the fuel reactor were
simulated and analyzed under the following conditions: the inlet velocity of methane
was 0.1 m/s, and the inlet velocity of the particle was 0.015 m/s. The gas and solid
volume distribution, the gas-solid phase velocity magnitude and vector field, gas-solid
temperature, gas-solid concentration distribution of the reactants and the products were
obtained.
Then, the gas-solid flow and heat transfer processed were simulated and compared
under the following conditions: the inlet velocity of methane were 0.075 m/s, 0.12m/s,
0.15m/s, and the inlet velocity of particle was 0.015 m/s. The influences of methane gas
inlet velocities on gas-solid flow feature, heat transfer and chemical reaction rates were
analyzed and obtained.
Secondly, the gas-solid flow and heat transfer processes in the fuel reactor were
simulated and compared under the conditions: the inlet velocity of methane was 0.13
m/s, and the inlet velocity of particle was 0.075 m/s, and the average particle size were
0.00015m, 0.00022m and 0.00035m. The influences of different particle size on
gas-solid flow feature, heat transfer and chemical reaction rates were obtained, and how
to improve the methane combustion efficiency also was analyzed.
Thirdly, the gas-solid flow characteristics and heterogeneous oxidation reaction
process was simulated. The distribution of the oxygen carrier particle volume fraction,
gas-solid phase velocity magnitude and vector of field, gas-solid temperature, gas-solid
concentration distribution of reactants and the combustion efficiency were obtained.
Finally, the gas-solid flow and heat transfer processes of the chemical looping
combustion in the two interconnected beds, the air (the fast fluidized bed) and fuel
reactor (the spouted fluidized bed) were simulated. By this means, the characteristics of
flow, chemical reactions and heat transfer between the two separated reactors were
linked up organically by the theory. The related conclusions of the interconnected
chemical looping combustion will provide the theoretical guidances for the future
experimental and simulations researches of the whole oxidation-reduction reaction
process of chemical looping combustion.
Key words: chemical looping combustion, fluidized bed reactor,
gas-solid heterogeneous chemical reactions, Eulerian-Eulerian
multiphase flow model, oxygen-carrier particles, numerical simulation
目 录
中文摘要
ABSTRACT
第一章 前 言 ...................................................................................................................1
第二章 文献综述 .............................................................................................................3
§2.1 引言 ...................................................................................................................3
§2.2 化学链燃烧技术 ...............................................................................................3
§2.2.1 化学链燃烧技术简介 .............................................................................3
§2.2.2 化学链燃烧气固反应流程 .....................................................................5
§2.2.3 化学链燃烧的研究热点 .......................................................................10
§2.3 流态化技术基础 .............................................................................................11
§2.3.1 流态化现象 ...........................................................................................11
§2.3.2 颗粒的分类方法 ...................................................................................12
§2.3.3 流化床中的气泡及其对流化质量的影响 ...........................................14
§2.3.4 流态化技术的优点 ...............................................................................14
§2.4 本课题的研究意义和主要工作 .....................................................................15
第三章 化学链燃烧的数值模拟方法 ...........................................................................17
§3.1 计算流体力学在气固两相流研究中的应用 .................................................17
§3.2 气固两相流模型 .............................................................................................18
§3.2.1 欧拉-拉格朗日法 ................................................................................. 18
§3.2.2 欧拉-欧拉法 ......................................................................................... 18
§3.3 气固两相流动力学方程 .................................................................................19
§3.4 化学反应机理 .................................................................................................24
§3.5 数值模拟方法 .................................................................................................26
§3.6 本章小结 .........................................................................................................27
第四章 燃料反应器内流动与传热的数值模拟 ...........................................................28
§4.1 引言 .................................................................................................................28
§4.2 燃料反应器的几何结构及计算参数 .............................................................28
§4.2.1 燃料反应器流化床几何结构 ...............................................................28
§4.2.2 模拟参数设定 .......................................................................................29
§4.3 计算模型验证 .................................................................................................30
§4.4 计算结果与讨论 .............................................................................................31
§4.4.1 甲烷进气速度为 0.1m/s 时的计算结果及讨论 .................................. 31
§4.4.2 甲烷进气速度对化学链燃烧效率的影响 ...........................................38
§4.4.3 颗粒粒径大小对化学链燃烧效率的影响 ...........................................42
§4.5 本章小结 .........................................................................................................49
第五章 空气反应器内流动与传热特性的数值分析 ...................................................52
§5.1 引言 .................................................................................................................52
§5.2 空气反应器的几何结构及操作条件 .............................................................53
§5.2.1 空气反应器流化床几何结构 ...............................................................53
§5.2.2 模拟参数设定 .......................................................................................54
§5.3 计算结果及讨论 .............................................................................................55
§5.3.1 颗粒体积分率分布规律 ........................................................................55
§5.3.2 气固速度分布规律 ................................................................................57
§5.3.3 气固温度分布规律 ................................................................................60
§5.3.4 气固化学反应速率及内热源项的分布 ................................................61
§5.3.5 气体组分的分布规律 ............................................................................62
§5.3.6 空气反应器轴向压力变化规律 ...........................................................64
§5.4 本章小结 .........................................................................................................64
第六章 燃料与空气反应器串行过程的数值模拟 .......................................................66
§6.1 引言 .................................................................................................................66
§6.2 空气与燃料反应器的几何结构及网格划分 .................................................66
§6.3 计算参数设置 .................................................................................................68
§6.4 计算结果与分析 .............................................................................................70
§6.4.1 空气与燃料反应器内颗粒分布情况 ...................................................70
§6.4.2 空气与燃料反应器内速度分布情况 ...................................................72
§6.4.3 空气与燃料反应器内温度分布情况 ...................................................74
§6.4.4 空气与燃料反应器内化学反应速率分布情况 ...................................75
§6.4.5 空气与燃料反应器内反应组分分布情况 ...........................................77
§6.4.6 空气与燃料反应器内反应气体氧化与还原程度的分布 ...................78
§6.5 本章小结 .........................................................................................................79
第七章 结 论 .................................................................................................................80
§7.1 本文总结 .........................................................................................................80
§7.2 工作不足与展望 .............................................................................................82
主要符号表 .....................................................................................................................84
参考文献 .........................................................................................................................86
...............................................................................................................................90
-1 化学链燃烧燃料反应器内的 UDF 程序 ...................................................... 90
-2 化学链燃烧空气反应器内的 UDF 程序 .................................................... 100
-3 化学链燃烧空气与燃料反应器串行过程的 UDF 程序 ............................ 104
在读期间公开表的论文和承担科研项目及取得成果 ...............................................112
...........................................................................................................................113
第一章 前言
1
第一章 前 言
近年来,随着人们生活水平以及全世界工业化的程度日益提高,由于传统的
煤、石油、天然气等化石燃料的过度消耗,导致 CO2温室气体大量的生成与排放。
CO2温室效应”带来的全球气候急剧变化的问题日益受到世界各国的重视。
球气候的不规律变化给人类社会与经济的发展造成了严重的损失,对能源、环境、
生态以及人类的生存与发展造成了巨大的威胁。目前,以低碳、低能耗、低污
为基础的“低碳经济”[1]已经成为了全球热点问题。
低碳经济的实质是提高能源利用的效率和改善清洁能源的结构问题,其核心
思想是能源技术与制度的创新,目标是减缓气候变化和促进人类的可持续发展[2]
化学链燃烧(Chemical-Looping Combustion, CLC)是一种新颖的燃烧技术,由于
具有较高的燃烧效率、彻底消除NOX污染物的排放以及CO2内分离不需消耗额外能
量的特点而受到了国内外广泛的关注[3]因此,化学链燃烧能源动力系统已成为世
界能源环境系统研究的重要方向,它的研究与应用对于减少NOx污染物的生成和
CO2的排放以及燃料的高效燃烧具有重要的意义,是解决节能与CO2减排问题的主
要发展先进技术之一[4]
目前,化学链燃烧技术已经成为国内外的研究热点。对化学链燃烧的研究一
般是选取热重反应仪TGA固定床、双流化床等作为反应器。由于载氧剂的性
能对化学链燃烧反应过程起着非常关键作用,因此,在化学链燃烧技术研究的早
期,大量的研究都主要集中在通过热重反应仪(TGA)和固定床等作为反应器
以实现对不同载氧剂的适用性、反应性能、耐高温等特性进行研究,找出具有广
泛适用性的载氧剂[5]而目前对化学链燃烧的研究主要是应用中小型流化床反应器
对床内气固流动、传热、化学反应动力学、燃烧效率及系统的热力学分析等问题
进行研究,最终为化学链燃烧装置的设计、实验研究及工业应用提供理论指导。
流态化技术目前已经在化工、能源、石化、冶金、材料、生化等工程领域具
有非常广泛的应用。与传统的燃烧、反应设备相比,流化床具有传热传质效率高、
床内温度易控制、床料易于加入和卸出、反应过程易于控制和调节以及拥有较高
的产品效率等优点[6]但是由于流化床内气、液、固多相流动过程中各相之间存在
着复杂的相互作用,其动态情况难以考察,再加上化学反应及反应放热,床内
度分布、温度分布及颗粒停留时间分布与流体动力学等因素互相耦合,使得床内
情况更趋于复杂,对流化床反应器流动与传热过程的认识受到了很大限制,这就
使得我们需要对多相流中各相流动和它们之间相互作用进行更加深入的研究。
化学链燃烧双流化床反应器内流动与传热的数值模拟
2
对流化床的研究,大多是用实验手段全面地检测流化床内的颗粒流态化状况
以及温度、浓度分布情况,但是容易受到各种因素的制约。随着计算流体力学
Computational fluid dynamics, CFD)和计算机技术的发展,应用 CFD 数值模
方法得到流化床化学反应器内流动与传热的特性已经成为可能。与实验方法相比,
采用计算流体力学对流化床化学反应器内的流动情况进行模拟可以了解反应器内
部流场的详细情况,如速度场、压力场、温度及浓度场分布,气固相体积分率等,
可以大大减少试验工作量、缩短研究周期、提高研究水平,对于指导流化床多相
流动与传热的研究、改善流化床内的流化质量具有重要意义,并成为实验研究手
段的重要补充[7]
本课题基于 Linux 操作系统的联想深腾 1800 并行计算平台,运用计算流体力
学软件 Fluent6.3 作为数值计算的工具,以欧拉-欧拉双流体模型和气固非均相化学
反应动力学为基础,嵌入自行编写的气固非均相化学反应、相间传质及反应放热
UDFUser Defined Model,用户自定义函数)程序,对化学链燃烧的空气、燃
料流化床反应器内气固两相流动与传热过程进行 CFD 数值模拟与分析,得到空气
与燃料反应器内压力、速度、温度、气固反应物及生成物浓度分布及固相体积分
布规律,并建立了合理的气固流动、传热及化学反应动力学模型,改进现有的化
学链燃烧流化床反应器的理论研究模型,为化学链燃烧的设计及实验研究提供理
论参考依据。通过对化学链燃烧的流动与传热过程进行分析,可以了解提高系
整体燃烧效率及能源利用效率的方法,为以后化学链燃烧系统的工业应用提供理
论基础。
第二章 文献综述
3
第二章 文献综述
§2.1 引言
迄今为止,传统的能源动力系统在分离与回收二氧化碳的过程中存在着很大
困难:化石燃料燃烧过程中产生并排放出了大量的二氧化碳,燃料直接燃烧的产
物常常由于氮气的影响导致二氧化碳浓度降低,而且烟气中二氧化碳在分离回收
过程中也会耗费大量的额外能量,导致传统的能源系统的整体效率有所下降(减少
了大约 5%—15%)。此外,传统的先污染后治理、先能源过程后环境过程的思路致
使额外地消费能源和增加污染物的产生[8]
化学链燃烧作为新一代高效、洁净的燃烧技术,与传统的二氧化碳回收方式
有着本质的不同,同时也因为具有燃料燃烧比较完全、杜绝了硫化物、氮氧化物
的生成与排放以及无需额外能量CO2进行分离和回收点等优点而受到了比较广
泛的关注[3]
§2.2 化学链燃烧技术
近年来,化学链燃烧技术已成为世界能源环境系统研究的重要方向,它的研
与应NOX成和CO2燃料烧具
的意义,是解决节能与CO2减排问题的主要发展先进技术之一[4]
§2.2.1 化学链燃烧技术简介
与传统的气体燃料和空气直接接触的有火焰的燃烧、一步就能完成化学反应、
燃烧温度较高(1500℃以上)的燃烧方式不同, 化学链燃烧的燃烧过程一般由两
步气固非均相化学反应组成,而且这两步反应分别在两个串行的反应器中独立完
成,其具体流程如图2-1所示,化学链燃烧系统主要由空气反应器、燃料反应器及
旋风分离器等组成。
载氧剂(Oxygen Carrier, OC)颗粒一般作为参与氧化还原反应的循环反应物,
它一般由活性组分和惰性组分按一定比例制备而成。大多数研究者都将金属氧化
物(如 CuONiOFe2O3等)或者非金属氧化物(如 BaSO4等)作为活性组分,
这些活性组成是反应的主要参与者;而惰性组分大多为 Al2O3YSZ、膨润土等,
用来承载活性组分并提高化学反应特性[3]
本文为研究需要,均选取由金属氧化物与惰性组分所组成的载氧剂颗粒作为
摘要:

摘要化学链燃烧技术(ChemicalLoopingCombustion,CLC)是一种新颖的燃烧技术,由于具有较高的燃烧效率、彻底消除了NOX污染物的排放以及CO2内分离不需消耗额外能量的特点而受到了国内外广泛的关注。目前,化学链燃烧能源动力系统已成为世界能源与环境系统研究的重要方向,它的理论、实验研究及工程应用对于减少NOX污染物的生成和CO2的排放以及燃料的高效燃烧具有重要的意义,是解决节能与CO2减排主要发展的先进技术之一。本课题基于Linux操作系统的联想深腾1800并行计算平台,运用计算流体力学软件Fluent6.3软件,以欧拉-欧拉多相流模型、颗粒动力学理论和气固非均相化学反应动力...

展开>> 收起<<
化学链燃烧双流化床反应器内流动与传热的数值模拟.pdf

共118页,预览10页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:118 页 大小:3.97MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 118
客服
关注