培养条件对海洋微藻固定烟气CO2的影响
VIP免费
摘 要
I
培养条件对海洋微藻固定烟气中 CO2的影响
摘 要
近年来,由化石燃料燃烧排放的烟气中的二氧化碳已经成为温室效应气体
控制的重点。当前国内外针对二氧化碳的减排控制进行了大量研究,并获得了
许多有价值的研究成果,其中海洋微藻生物因其比一般植物光合速率高、繁殖
快、环境适应性强,是一种高效的 CO2固定转化载体,因此利用海洋微藻固定
二氧化碳技术由于其更具环保、经济、符合自然界循环的独特优势,为解决能
源、环境问题提供了一条全新而有效的固碳模式,从而受到国内外研究者的高
度重视。由于微藻固碳技术提出的时间较短,因此目前大多数研究仍处于实验
研究阶段,有待更进一步系统的研究。本文主要研究在鼓泡式光生物反应器中
培养条件对海洋微藻生物固定 CO2的影响,其中培养条件主要从通入反应器的
气体条件和生物培养条件两个方面讨论。
鼓泡式光生物反应器中进行藻种筛选实验的结果表明,与等鞭金藻和四鞭
前沟藻相比,小球藻为三种海洋微藻中的优势藻种,它在通入 CO2浓度为 15%
模拟烟气条件下生长以及固碳效率均表现为最好。在此基础上,本文首先从进
气流量和进气中 CO2浓度两方面研究气体条件对小球藻生长和固碳性能的影
响,研究结果表明,过大的进气流量对小球藻的生长和固碳性能有抑制作用,
而适当的扰动有利于藻液内的气液传质的进行,不仅会促进藻液中 CO2的溶解,
为微藻提供充足的碳源,还有利于排出微藻光合作用所产生的过量 O2从而促进
小球藻的生长;通入气体中 CO2浓度的升高会对小球藻的生长和固碳性能产生
抑制作用,CO2溶解导致的藻液 pH 值下降以及所产生的 CO32-和HCO3-是导致
这种抑制作用的主要因素。
其次,研究了藻种初始接种密度、光生物反应器表面光照强度以及培养温
度三个生物培养条件对小球藻生长和固碳性能的影响。结果表明,在本实验三
种微藻初始接种密度培养条件下,随着初始接种密度的增大,微藻生长和固碳
效率越高,当初始接种密度为 1.5g/L 时表现为最好;随着光照强度的升高,微
藻的生长和固碳效率逐渐提高,但光照强度过高又会抑制微藻的生长和固碳,
光照强度在 5000Lux 时为其适宜的光照强度;培养温度过高或过低都会对微藻
的生长和固碳产生抑制作用,当超过微藻的“忍耐温度”上限时甚至造成微藻
死亡,当培养温度在 18±1℃时微藻的生长和固碳情况良好。
摘 要
II
最后,基于以上实验数据,根据吸附-生物膜理论,建立了鼓泡式光生物反
应器微藻生物固碳理论模型,并运用动力学方程计算其对应的 CO2固碳效率变
化规律。结果表明,理论模型的计算结果与试验测试结果基本吻合,可实现对
微藻固碳效果的较好预测。
关键词: 微藻 小球藻 生物固碳 烟气 培养条件 鼓泡式生物反应
器
ABSTRACT
III
The Influence of Cultivation Conditions on
Biofixation of CO2 from Flue Gas by Microalgae
ABSTRACT
Global warming has become one of the focuses of governments, academic
circle and business circle all over the world. It is widely recognized that CO2 from
human activities is the main cause of warming effect nowadays, so controlling CO2
emission has become the priority task of controlling greenhouse gases. Many
researches on reduction of CO2 emission has been conducted and has generated
many valuable fruits from home and abroad, among which bio-fixation of CO2 by
micro-algae chlorella sp. has been emphasized by scholars home and abroad since it
has provided a brand-new and efficient bio-fixation solution to the issues of energy
and environment for its special advantage in the fields of environment protection,
economy, efficiency and natural recycling. This paper is aimed at the influence of
cultivation conditions on bio-fixation of CO2 by micro-algae chlorella sp. in bubble
reactor, among which cultivation conditions are mainly studied by gas conditions
and biological conditions in reactor.
In recent years, controlling the emission of CO2 produced by fossil fuel has
become the priority task of controlling greenhouse gases. Many researches on
reduction of CO2 emission has been conducted and has generated many valuable
fruits at home and abroad, among which micro-algae chlorella sp. is a highly
efficient carrier of CO2 transformation for its better performance in photosynthesis,
reproduction, environment adaptability than normal plants. So bio-fixation of CO2
by micro-algae chlorella sp. is highly emphasized by researchers at home and
abroad since it provides a brand-new and efficient bio-fixation solution to the issues
of energy and environment for its special advantage in environment protection,
economy, efficiency and natural recycling. Since bio-fixation of CO2 by
micro-algae chlorella is a newly-introduced technology, many researches are still in
the experiment stage lacking systematic research. This paper is aimed at the
influence of cultivation conditions on bio-fixation of CO2 by micro-algae chlorella
ABSTRACT
IV
sp. in bubble reactor, among which cultivation conditions are mainly studied by gas
conditions and biological conditions in reactor.
In this thesis, sifting experiment is conducted in bubble photo-bioreactor and
the result shows micro-algae is the dominant one since it has the best performance
among Amphidinium carterae and Isochrysis under simulative flue gas when CO2
concentration is 15%. Based on this result, the influence of air input and CO2
concentration in gas on the growth and CO2 fixation of chlorella sp.. are studied
first. The result shows that the increase of gas input is an inhibiting factor towards
that of chlorella sp. while moderate disturbance is beneficial to the gas-liquid mass
transfer in chlorella since it not only accelerates the dissolution of CO2 in chlorella
solution to provide enough carbon sources but also discharges excessive O2 to
promote the growth of chlorella. The increase of CO2 concentration can also
suppress the growth and CO2 fixation of chlorella sp. while the decrease of PH
caused by CO2 dissolution and CO32-and HCO3- are main causes.
Second, the influence of inoculums density, light intensity on the surface of
bubble photo-bioreactor and cultivation temperature on the growth and CO2 fixation
of chlorella sp. is studied. The result shows that chlorella has a better performance
in growth and CO2 fixation with the increase of inoculums and reaches the best
when inoculums density is 1.5g/L. It is the same with light intensity but excessively
high light intensity will inhibit the growth and CO2 fixation of chlorella and the
most suitable light intensity is 5000Lux. Both excessively high and low cultivation
temperature will suppress the growth and CO2 fixation of chlorella whether it is too
high or too low. It even kills chlorella when it exceeds the upper limit chlorella
could bear 18±1℃ fits the growth and CO2 fixation best.
Last, the model of bio-fixation of CO2 by micro-algae in bubble
photo-bioreactor is founded. This model applies dynamic equation to calculate the
change law of CO2 fixation efficiency. The result shows that the theoretical model
successfully estimates experiment results, which can offer a preferable forecast of
CO2 fixation performance by micro-algae chlorella.
Key words: Microalgae, chlorella sp., CO2 bioixation, flue gas,
cultivation conditions, bubble photobioreactor
目 录
I
目 录
中文摘要
ABSTRACT
第一章 绪 论 ................................................................................................. 1
1.1 化石燃料燃烧烟气中排放的 CO2现状及危害 ................................ 1
1.2 CO2的捕集与封存(CCS)技术 ...................................................... 2
1.2.1 CO2的捕集与分离方法 .......................................................... 2
1.2.2 CO2的封存与固定方法 .......................................................... 4
1.3 海洋微藻固定 CO2研究进展 ........................................................... 6
1.3.1 高效藻种的筛选和培育 ......................................................... 6
1.3.2 高效光生物反应器的开发 ..................................................... 8
1.3.3 微藻固碳机制的探索 ............................................................. 9
1.4 本文研究的目的、内容和方法 ...................................................... 10
1.4.1 背景及意义 .......................................................................... 10
1.4.2 目的、内容和方法............................................................... 11
1.5 本章小结 ......................................................................................... 11
第二章 实验材料及方法 .............................................................................. 13
2.1 实验仪器、装置与条件 ................................................................. 13
2.1.1 实验仪器 .............................................................................. 13
2.1.2 实验装置系统 ...................................................................... 13
2.1.3 实验条件 .............................................................................. 14
2.2 藻种与培养基 ................................................................................. 14
2.2.1 藻种及藻种保存 .................................................................. 14
2.2.2 培养基 .................................................................................. 15
2.2.3 优势藻种的筛选 .................................................................. 15
2.3 实验分析方法 ................................................................................. 17
2.3.1 藻细胞浓度分析 .................................................................. 17
2.3.2 DO 值和 pH 值分析 .............................................................. 19
2.3.3 藻种的生长特性及固碳效率分析 ....................................... 20
2.4 本章小结 ......................................................................................... 21
第三章 气体条件对小球藻生长和固碳性能的影响 .................................... 22
目 录
II
3.1 前言 ................................................................................................22
3.2 实验规划与工况 .............................................................................22
3.3 结果与讨论 .....................................................................................23
3.3.1 通入气体的流量对小球藻生长和固碳性能的影响 ............23
3.3.2 气体中 CO2浓度对小球藻生长和固碳性能的影响............26
3.4 本章小结.........................................................................................29
第四章 生物培养条件对小球藻生长和固碳性能影响 ................................ 31
4.1 前言 ................................................................................................31
4.2 实验规划与工况 .............................................................................31
4.3 结果与讨论 .....................................................................................32
4.3.1 藻种接种密度对小球藻的生长和固碳性能的影响 ............32
4.3.2 光照强度对小球藻的生长和固碳性能的影响 ....................36
4.3.3 培养温度对小球藻的生长和固碳性能的影响 ....................40
4.4 本章小结.........................................................................................44
第五章 鼓泡式反应器中微藻固定 CO2动力学模型 ................................... 46
5.1 前言 ................................................................................................46
5.2 鼓泡式光生物反应器动力学模型的建立 ......................................46
5.2.1 基本理论和假设 ..................................................................46
5.2.2 模型的建立 ..........................................................................46
5.2.3 模型的验证 ..........................................................................48
5.3 本章小结.........................................................................................51
第六章 结论与展望...................................................................................... 52
6.1 结论 ................................................................................................52
6.2 展望 ................................................................................................53
参考文献 ....................................................................................................... 54
第一章 绪论
1
第一章 绪 论
近年频发的自然灾害与全球气候变暖密切相关,如不加以控制将严重威胁
人类的生存和发展[1]。全球气候变暖已成为各国政府、学术界以及企业界关注
的焦点之一。然而在所有温室气体中,二氧化碳对温室效应的贡献最大,占 60%,
而且在大气中含量最高,因此对二氧化碳的控制成为温室效应气体控制的重点
[2]。
1.1 化石燃料燃烧烟气中排放的 CO2现状及危害
2006 年在日内瓦召开的全球气候变暖问题研讨会上专家普遍指出,全球气
候变暖的趋势将越来越危及人类的生存环境[3]。由于大气中 CO2的浓度增加导
致的全球变暖,从而引发了一系列环境问题:①冰川融化,海平面上升。据世
界冰川监测机构公布的统计数据显示,2005 年冰川厚度融化了 0.66m,全球冰
川厚度 25 年间减少 10.56m,自 2000 年以来,冰川消融的平均速度分别为上世
纪90 年代和 80 年代的 1.6 倍和 3倍。据政府间气候变化专门委员会(IPCC)
专家预测,到 2100 年,海平面将会上升 18-59cm;②极端天气现象增多。“全
球变暖”会影响大气环流,继而改变全球的降水量分布,有些地区的降水量会
增大,导致洪涝和风暴潮灾害增多,2003 年欧洲国家和地区因热浪引发的死亡
人数估计为 35118 人,其经济损失总量超过了 130 亿美元[4];③对农业和粮食
安全的影响。由于“全球变暖”影响到了大气环流,使全球的水循环发生了变
化,在有些地区的表现是降水量明显多于往年,甚至发生洪涝灾害,农作物受
灾,发生地质灾害等,而在有些地区则表现为高温和干旱[5]。
随着工业的不断发展和地球人口的增加,大量人为排放的温室气体正引起
世界各国的广泛关注,2004年CO2的排放量占人类活动产生的温室气体总量的
77%[6],而且有继续恶化的趋势。据世界气象组织(WMO)与联合国环境规划
署(UNEP)建立的政府间气候变化专门委员会(IPCC)的研究报告,大气中
CO2的平均体积分数已由工业革命前的2.78×10-2% 增加到1994年的3.56×
10-2% ,并正以每年1.5%的速率增加[7];据1995年IPCC发表的“business as usual”
报告,全球CO2排放量将从1997年的7.4×109t增加到2100年的7.7×1010 t,CO2
体积分数将达到7.5×10–2%,是工业革命前的2倍[8];而据1998年世界能源委员
会和国际应用系统分析研究所(WEC/IIASA) 的报告,即使努力发展核能、太阳
能等无碳能源或尽可能减少一些不必要的能源需求,在2050年化石燃料仍将占
摘要:
展开>>
收起<<
摘要I培养条件对海洋微藻固定烟气中CO2的影响摘要近年来,由化石燃料燃烧排放的烟气中的二氧化碳已经成为温室效应气体控制的重点。当前国内外针对二氧化碳的减排控制进行了大量研究,并获得了许多有价值的研究成果,其中海洋微藻生物因其比一般植物光合速率高、繁殖快、环境适应性强,是一种高效的CO2固定转化载体,因此利用海洋微藻固定二氧化碳技术由于其更具环保、经济、符合自然界循环的独特优势,为解决能源、环境问题提供了一条全新而有效的固碳模式,从而受到国内外研究者的高度重视。由于微藻固碳技术提出的时间较短,因此目前大多数研究仍处于实验研究阶段,有待更进一步系统的研究。本文主要研究在鼓泡式光生物反应器中培养条件...
相关推荐
-
跨境电商商业计划书模版VIP免费
2025-01-09 27 -
跨境电商方案范文VIP免费
2025-01-09 14 -
创业计划书VIP免费
2025-01-09 18 -
xx生鲜APP计划书VIP免费
2025-01-09 12 -
跨境电商创业园商业计划书(盈利模式)VIP免费
2025-01-09 8 -
跨境电商计划书VIP免费
2025-01-09 13 -
绿色食品电商平台项目计划书VIP免费
2025-01-09 22 -
农产品电子商务商业计划书VIP免费
2025-01-09 8 -
农村电商平台商业计划书VIP免费
2025-01-09 13 -
生鲜商城平台商业计划书VIP免费
2025-01-09 21
作者:高德中
分类:高等教育资料
价格:15积分
属性:64 页
大小:1.06MB
格式:PDF
时间:2024-11-19

