高频感应热等离子体环境下溶液液滴及中空壳状颗粒的蒸发机理研究

VIP免费
3.0 赵德峰 2024-11-11 13 4 19.95MB 77 页 15积分
侵权投诉
对于溶液注入热等离子体喷涂(Solution Precursor Plasma Spray, SPPS)进行改
进,利用高频感应热等离子来替代直流热等离子炬,将溶有涂层材料的前驱
溶液替代材料粉末,且以喷雾液滴的形式,由内气携带,轴向地射入热等离子
环境。溶液液滴在热等离子体中运动吸热,使得液滴温度升高,溶剂蒸发。随着液
滴溶质浓度的增大,到达临界过饱和浓度时,溶质析出,形成实心固体或中空
状等各种不同形态的颗粒。而中空壳状颗粒包裹溶液继续在热等离子体环境中
动,环境热量通过固体壳层传递入颗粒内部,颗粒内部溶液受热蒸发,产生蒸
使得内部压力增大,导致颗粒破裂,影响最终到达基板时的形态。因此溶液液
的整个运动蒸发历程,对涂层的最终结构有着重要的影响。
本文首先对于高频感应热等离子体射流的温度场和速度场建立相应的模型
分别考虑了输入功率、激励电流频率及工作气体流量对整个射流场的温度、速度分
布变化的影响,通过研究分析,选取能为后续数值模拟研究所采用的模型数据。
然后,建立单个液滴在高频感应热等离子体射流场中的运动蒸发模型。在
于忽略了液滴内部温度梯度的情况下,通过数值计算的方法,模拟了液滴在高
热等离子体射流中的传热和运动过程,考虑随着温度和组份变化的液滴表面气
混合物、斯蒂芬流对薄膜理论的修正影响,分析研究了不同操作参数对液滴运
蒸发过程的变化趋势的影响。
在此基础上,建立了单个液滴及中空壳状颗粒内部的热物理模型,包括液
及颗粒内溶液部分的球形环流模型,传热、传质模型及颗粒内压力模型,应用
级均相成核假设和溶质平衡浓度,确定颗粒固体壳层成形情况,并考察环流对
滴及颗粒内部传热传质的影响,分析比较在不同入射参数的情况下,液滴及颗
内部的温度场、浓度场和颗粒内压力的不同变化情况。
本文研究所获得结果,不仅加深了对溶液液滴在高频感应热等离子体中
动蒸发过程认识,而且还有助于揭示热等离子体喷涂在制备纳米结构涂层中
作参数的重要性,最终充实热等离子体条件下溶液液滴蒸发机理方面的研究理论。
本课题受到国家自然科金 (项目编号:50706027)海市教育委员会
创新金(项目编号:09YZ206)海市点学科建设项目 (项目编号:J50501)
教育留学回人员科研动基助。
关键词: 溶液注入等离子喷涂 频感应热等离子 液滴 蒸发 环流
破裂 数值模
ABSTRACT
Use the RF plasma torch taking the place of the DC plasma torch to Improving the
Solution Precursor Plasma Spray (SPPS). In this process, the atomized precursor salt
solution droplets with the ceramic coatings are axially injected into the plasma
environment with carrier gas. The droplets are motioned and rapidly heated up and
result in the temperature of droplets increasing and the solvent evaporated. With the
solute concentration increasing and reaching the critical super-saturation (CSS), the
solute separated out which results in the formation of hollow shell or solid particles. The
process of the hollow shell particles containing the solution moving continuative in the
plasma spraying, the internal solution of particles heated up and evaporated results in
the vapor produced and internal pressure increasing and finally the particles ruptured.
Thus, the whole movement and evaporation process of the droplets has important effect
to the final substrate of the coating.
First of all, a model is established to simulate the temperature and velocity field of
RF-ICPS. The influence of input power and current frequency and gas flow are
considered. By analyzing, we take the data which the follow-up simulation model can
use.
And then, a movement and evaporation model is developed to simulate the
behavior of an individual precursor droplet in RF-ICPS plasma environment. It
simulates the motion and heat transfer of droplet in RF-ICPS field based on neglecting
the internal temperature gradient by numerical simulation. The variable physical
properties of solution and the influence of Stefan flow to the film modified theory are
considered. The influence of the different operation parameters to the evaporation and
motion of droplet are predicted.
At last, a thermal physics model is developed to analyze the behavior of an
individual droplet and hollow shell particle which contains the internal circulation
model, mass and heat transfer model and internal pressure of particle model. With
employing the simple homogeneous nucleation hypothesis and equilibrium saturation of
solute, the microcosmic morphologies of the particles are confirmed. The influence of
the Hill’s spherical vortex to the mass and heat transfer of the internal solution are
considered. The variation of the temperature and concentration distribution and pressure
are presented by the different injection parameters compared.
A better comprehending of the process of precursor salt solution injection into RF-
ICPS plasma and the mechanism of droplet evaporation can be enriched finally by this
study.
The financial support of the National Natural Science Foundation of China (Project
50706027), the Scientific Innovation Foundation of Shanghai Education Commission
(Project 09YZ206), the Scientific Research Foundation for the Returned Overseas
Chinese Scholars, and Shanghai Leading Academic Discipline Project (Project J50501)
is gratefully acknowledged.
Key Word: Solution Precursor Plasma Spray, Radio Frequency
Inductively Coupled Plasma Torch, droplet, evaporation, circulation,
fracture pressure, numerical simulation
目 录
中文
ABSTRACT
第一章 ........................................................ 1
1.1 ..........................................
1
1.2 ..........................................
4
1.3 课题的研究内 ................................................
6
第二章 热等离子体射流场的数值模拟 ...................................
8
2.1 题及数 ............................................
8
2.1.1 ..............................................
8
2.2 计算结果及分析 ...............................................
10
2.2.1 输入功率对等离子炬内温度速度场的影响 .....................
11
2.2.2 .................
16
2.2.3 .................
21
2.3 章 小 .....................................................
26
........................
28
3.1 物 理 题及数模 型 ...........................................
28
3.1.1 液 滴 运 动 蒸 发 模 型 .........................................
28
3.2 .....................................
31
3.3 计算结果及分析 ...............................................
33
3.3.1 计算参数选取 .............................................
33
3.3.2 对液滴蒸发过程的影响 .........................
35
3.3.3 入射速度对液滴蒸发过程的影响 .........................
37
3.3.4 入射浓度对液滴蒸发过程的影响 .........................
38
3.3.5 度对液滴蒸发过程的影响 .........................
39
3.4 章 小 .....................................................
41
第四章 液滴及壳状颗粒内部传热传质的研究 ............................
43
4.1 物 理 题及数模 型 ...........................................
43
4.1.1 ...........................
44
4.1.2 热 量 模 型 .................................................
46
4.1.2.1 颗粒固体壳层的热量模型 ...............................
46
4.1.2.2 .......................
47
4.1.3 .......................
47
4.1.4 颗粒内部的压力模型 .......................................
48
4.2 计算结果分 析 ...............................................
49
4.2.1 计算参数的选取 ...........................................
49
4.2.2 ...........
49
4.2.2.1 .......................
49
4.2.2.2 .............
54
4.2.3 不同入射速度下对液滴及颗粒内的传热传质及压力影响 .........
59
4.2.3.1 .......................
59
4.2.3.2 .............
62
4.3 章 小 .....................................................
67
.......................................................
69
符 号 .........................................................
71
参 考 文 ...........................................................
73
第一章 绪
第一章
1.1 课题的研究背景意义
随着近年航航天子能以及电力、化工机等各个领域的工程技术
件的使用寿命的要求逐渐,使用于件的、制备功能涂
以及化部件表面性能的热喷涂技术[1]受到研究人员的重热喷涂技术
制备的纳米结构涂层性能优异以使基体表面耐磨耐蚀高温化、
绝缘热、防辐射、减磨密封等性能,良好的应用前[2]中,热等离子
喷涂技术是热喷涂技术中最重要的组成部分之一
热等离子喷喷涂的材料(非金属入能中的
离子体中加热成熔融半熔态,然后熔融雾状粒状态冲击并在基体
固,最终形种层叠堆积式结构涂层的技术。由于热等离子喷涂的中
温度高达 15000K 以上,并高速射流喷出,因此几乎可金属
金属陶瓷材料,并对射入的粉末速加热加速,使形成致的涂层
[3~5]。由于形成涂层的孔隙,结合度高,表面性能,热等离子喷涂得到了广
的应用和发[6]
在传粉热等离子喷涂技术中,由于纳米结构粉体质量比表面大,
颗粒细小形成流,而热等离子体喷涂的温度均达到上千甚
在喷涂过程中材料粉末烧损、气化的现象严重,响所制备涂层的性和
[7]
对以上题,溶液注入热等离子喷涂(Solution precursor Plasma Spray, SPPS)
对传统送粉热等离子喷涂技术进行改进[8]工作,将选用的固体材料,
计量比成溶液的前驱体溶液,雾化,以喷雾形式射入热等离
子体环境。液滴在热等离子体中受热蒸发,溶质成颗粒,最终在基板表面
形成纳米结构涂层。中前驱体溶液有化组份可控性及材料选用的灵活性等
[9],能从一定程度上避免喷涂技术中纳米尺寸颗粒的制备过程[8, 10, 11]
前,溶液注入等离子喷涂使用直流(DC)热等离子炬为等离子
体的发生。直流热等离子生电使气体电离而产生等
子体,然采取结构和措施后温度达到 3-5WK置简单,功率大,
价格便宜,能量率高使寿命却受到电极腐
[3]1-1 所示为利用直流热等离子炬的溶液注入等离子喷涂示意图[12]
1
高频感应热等离子体环境下溶液液滴及中空壳状颗粒的蒸发机理研究
1-1 所示为利用直流热等离子炬的 SPPS 喷涂过程
高频(RF)等离频电应作各种进行
热,产生等离子体。然高频感应热等离子炬热率较,仅为 50%能量利
由于射频发线圈负载耦合的,比直流热等离子炬
极消无污染,等离子炬使寿命长,温度均,不受气
制等[3],使频感等离能替流热子炬为溶入热
等离子喷涂的要发生部件。
1-2 利用高频感应热等离子炬的SPPS喷涂过程
1-2为利用高频感应热等离子炬的溶液注入等离子喷涂过程意图[13]。高
感应热等离子炬由内用于携带溶液液滴进入加热环、中喷射
等离子气体以及管壁(起保护高温烧损的作三股
作气体及感线圈组成。工作是:将溶有喷涂材料的前驱体溶液,
定速度的内气轴向地携带进入热等离子体环境,溶液液滴一系物理
过程,最终在基板上沉积,形成纳米涂层。
1-3分别利DCRF等离子炬的喷涂技术制备的热涂层微观结构
2
摘要:

摘要对于溶液注入热等离子体喷涂(SolutionPrecursorPlasmaSpray,SPPS)进行改进,利用高频感应热等离子炬来替代直流热等离子炬,将溶有涂层材料的前驱体溶液替代材料粉末,且以喷雾液滴的形式,由内气携带,轴向地射入热等离子体环境。溶液液滴在热等离子体中运动吸热,使得液滴温度升高,溶剂蒸发。随着液滴溶质浓度的增大,到达临界过饱和浓度时,溶质析出,形成实心固体或中空壳状等各种不同形态的颗粒。而中空壳状颗粒包裹溶液继续在热等离子体环境中运动,环境热量通过固体壳层传递入颗粒内部,颗粒内部溶液受热蒸发,产生蒸汽使得内部压力增大,导致颗粒破裂,影响最终到达基板时的形态。因此溶液液滴的...

展开>> 收起<<
高频感应热等离子体环境下溶液液滴及中空壳状颗粒的蒸发机理研究.doc

共77页,预览8页

还剩页未读, 继续阅读

作者:赵德峰 分类:高等教育资料 价格:15积分 属性:77 页 大小:19.95MB 格式:DOC 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 77
客服
关注