大颗粒固定床化学链燃烧器内传热

VIP免费
3.0 赵德峰 2024-11-11 4 4 951.46KB 84 页 15积分
侵权投诉
化学链燃烧技术(Chemical Looping Combustion, CLC)是一种新型的清洁燃烧
技术,学链烧器程的究是个重要向,课题用实验
方法分床化链燃复杂传热程,研点是学链烧过程
的非定和大粒固热所有的向不均目前关固床燃烧
器的研在初探索缺乏确的验数据该课具有大的研
究价值的主工作个方,现实验装置的改进定床学链燃
烧器内非定常传热现的实验分析。
现有验装置进行改进课题学链燃烧传热研究的基础的实验
装置面的不一是高预度低;二道保效果差,径向
损失;三进行预热的方式效率非常,因此针对以上所有
改进计了套加热装,一来提升预温度,一来增强
管道保效果,该装置必须备加率高、耐度高特性,热过程
中进行细致调试最终达到较为理想温度保温效果
本文工的重是分化学燃烧中氧反应还原应中热过程的规律
性,包常传特性温度和径向的分。据析研究可知
/粒径10 情况下,床明显流量不均匀性及壁效应导致
近壁流量配比例40%以上孔道的不均匀性影响传热。本
课题采用的负载型大颗粒的比为 8.3因此也会明显流量不均匀性
产生的传热不均匀性本文在改进实验上对 Cu/CuO(负载Al2O3
燃烧内的过程行了究,获得的实数据分析
传热过定常特点及轴径向温度规律反应原反应都放出
热,反应剧烈化学燃烧过程道轴明显
热和传热的排除实验造成的特情况温升
锋推移速逐渐的,同时管壁较管可以忽略,热损失
传热造成径向明显温度由于径向流体不均匀
性和化学导致径向温度度存大的。此外也分析
气流量及空隙率对程的影响进气流明显缩短温升
移时间使向前后端热的影响更小同时径向温度度;减小
空隙率可使温升提高减小向热损失同时径向热损失
因此量及空隙率对热的影响有一定的规律综合研究,大
颗粒固定床化学链烧器内杂的传热现,本文的研究果对固定床
CLC 燃烧器研究和开发具有一定的意义
关键词:化学链燃烧 固定床燃烧器 二维拟均相传热 大颗粒
载型 Cu 基颗粒
ABSTRACT
Chemical looping combustion (CLC) is a new clean combustion technology. Heat
transfer in the chemical-looping combustors is one of the important research directions
in the field. This thesis is aimed to analyze experimentally the complicated heat transfer
process in the packed bed combustor filled with large oxygen carrier particles. The
investigation is focused on the transient heat transfer and the peculiar radial
heterogeneity. The study on fixed bed reactor based CLC is still at the initial stage, and
therefore are research in the field either experimental or theoretical, is very limited. The
present work includes mainly two parts: (1) improving the experimental set-up; (2)
investigating the transient heat transfer process in the combustor.
The improving of the existing experimental set-up is essential to perform
thoroughly the planned study on packed bed chemical-looping combustion. Three
existing aspects of the set-up need to be improved. Firstly, the preheat temperature in
the pipe segment is not sufficient; Secondly, pipe insulation is not good enough; Thirdly,
test section was preheated with inflow gas that takes too long time. Two additional sets
of heating device have been designed and installed, one for increasing the preheat
temperature, and another for better insulation. The new heating devices have the high
heating power and high heat-resistant temperature. With the improvements the above
mentioned shortcomings have been finally avoided.
The present work focuses on experimental investigation on the heat transfer
process of chemical looping combustion, which contains the transient heat transfer and
the temperature distribution at the axial direction and radial direction. The CLC packed
beds are usually with small tube-to-particle ratio. According to the previous work, the
flow distribution appears obviously inhomogeneous and wall effect exists in packed
beds under the circumstance of the tube diameter/particle diameter smaller than 10,
which causes the more than 40% of the flow rate through area near the wall. The
distribution inhomogeneity in the beds has strong effects on heat transfer. In the present
work, the tube-to-particle diameter ratio is 8.3, in which flow and heat transfer
inhomogeneity is certainly expected. Research on the heat transfer of the packed bed
combustor filled with Cu-based oxygen carrier (supported with porous Al2O3 particles)
is conducted based on the improved experimental set-up. The study reveals that a great
amount of heat generates in both the oxidation reaction and reduction reaction, but it is
more intense in the oxidation reaction; Heat superposition phenomenon caused by the
reaction and heat transfer appears in axial direction; The front end of the temperature
rise is large goes forward quickly at the axial line, but temperature rise at the walls is
much smaller than inside; It is also found that very obvious radial temperature gradient
exists. Considering the nearly heat insulated wall, the large temperature gradient should
be caused by the flow distribution inhomogeneity and the relevant non-uniform
gas-solid chemical reaction. In addition, Effects of different inlet flow rates and
different void fraction on the heat transfer process have also been investigated. The
increasing inlet gas flow rate will significantly speed up the reaction front axial
movement and at the same time change the radial temperature gradient. Smaller bed
void fraction is found to determine larger temperature rise and large radial temperature
gradient. In conclusion, heat transfer phenomenon are complicated in the packed bed
chemical looping combustion reactor with large particles, and the present work reveals
some interesting insights about it that can be helpful for research and development of
packed bed CLC combustor.
Key Words: Chemical-Looping Combustion, Packed bed reactor,
Two-dimensional homogeneous, Heat transfer, Large particles,
Supported copper-based particles.
摘要
ABSTRACT
............................................................................................................ 1
献综述 ...................................................................................................... 3
2.1 引言 ................................................................................................................ 3
2.2 化学链燃烧反应 ......................................................................................... 3
2.2.1 化学链燃烧技术原理.............................................................................. 3
2.2.2 化学链燃烧器的介绍 ............................................................................. 4
2.2.3 固定床燃烧器的动与传热研究 .......................................................... 9
2.2.4 固定床化学链燃烧的研究现 ............................................................ 16
2.3 氧体的研究............................................................................................... 18
2.3.1 氧体 ....................................................................................... 18
2.3.2 氧体的研究现 ............................................................................... 19
2.4 本课题的研究意义和主要工作 .................................................................... 20
固定床化学链燃烧实验装置的改进调试 .............................................. 22
3.1 固定床化学链燃烧实验装置 ....................................................................... 22
3.1.1 实验装置介绍 ....................................................................................... 22
3.1.2 实验条件及相 ............................................................................ 25
3.2 加保温层下管道损失分析 .................................................................... 26
3.3 热装置的设计与安 ............................................................................... 28
3.4 实验............................................................................................... 29
3.5 管道预热过程的调试 ................................................................................... 32
3.6 章小结 ...................................................................................................... 33
第四章 固定床化学链燃烧器内传热的实验分析 .................................................. 35
4.1 还原过程固定床内的非定常传热分析 ................................................ 35
4.1.1 水平管道面处的化过程 ........................................................ 36
4.1.2 层轴各位向的传热分析 .................................................... 36
4.1.3 性段径向的传热分析 ........................................................................ 40
4.2 化过程固定床内的非定常传热分析 ................................................ 44
4.2.1 水平管道面处的化过程 ........................................................ 45
4.2.2 层轴各位向的传热分析 .................................................... 45
4.2.3 性段径向的传热分析 ........................................................................ 49
4.2.4 小结讨论 ............................................................................................... 53
4.3 甲烷进气流量对还原反应非定常传热的影响............................................. 53
4.3.1 性段向传热分析 ................................................................ 54
4.3.2 甲烷流量对性段反应和热前移动过程的影响 ...................... 55
4.3.3 甲烷流量对径向温升影响 ........................................................ 57
4.4 气进气流量对氧反应非定常传热的影响............................................. 58
4.4.1 性段向传热分析 ................................................................ 59
4.4.2 气流量对性段反应和热移动过程的影响 .................. 60
4.4.3 气流量对径向温升影响 ........................................................ 62
4.4.4 小结讨论 ............................................................................................... 63
4.5 空隙率对固定床 CLC 反应过程中温升影响 ................................... 63
4.5.1 空隙率对轴反应过程中温升影响 ............................................. 64
4.5.2 空隙率对性段径向温升影响 ........................................................ 66
4.5.3 小结讨论 ............................................................................................... 67
4.6 章总结 ...................................................................................................... 67
第五章 结论与展望 ................................................................................................ 69
5.1 结论 .............................................................................................................. 69
5.2 与展望 .................................................................................................. 70
号表........................................................................................................................ 71
.................................................................................................................... 73
开发文和承担科得成 .............................................. 79
........................................................................................................................ 80
摘要:

摘要化学链燃烧技术(ChemicalLoopingCombustion,CLC)是一种新型的清洁燃烧技术,有关化学链燃烧器传热过程的研究是一个重要研究方向,本课题采用实验方法分析固定床化学链燃烧器内复杂的传热过程,研究的重点是化学链燃烧过程的非定常特性和大颗粒固定床传热所特有的径向不均匀性。目前有关固定床燃烧器的研究仍处在初期探索阶段,缺乏准确的实验数据,因此该课题具有很大的研究价值。本文的主要工作包括两个方面,现有实验装置的改进和固定床化学链燃烧器内非定常传热现象的实验分析。对现有实验装置进行改进是本课题化学链燃烧传热研究的基础。已有的实验装置存在三方面的不足,一是管段最高预热温度低;二是管...

展开>> 收起<<
大颗粒固定床化学链燃烧器内传热.pdf

共84页,预览9页

还剩页未读, 继续阅读

作者:赵德峰 分类:高等教育资料 价格:15积分 属性:84 页 大小:951.46KB 格式:PDF 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 84
客服
关注