主动式冷梁诱导性能研究与优化设计

VIP免费
3.0 侯斌 2024-11-19 4 4 2.33MB 86 页 15积分
侵权投诉
主动式冷梁是一种带新风诱导的气—水换热末端设备。由空调机组处理的室
外新风(一次风)被送入冷梁内,经过喷嘴的高速射流在冷梁内部形成局部负压,
从而诱导室内空气(二次风)从回风面板进入冷梁内,与盘管进行热交换,冷却
或加热后的二次风与一次风混合,最终经送风通道进入室内。主动式冷系统
于其显著的节能效益、良好的气流组织分布、舒适的室内空气品质以及低噪音等
优点,已被定位新世纪的绿色空系统,采用主动式冷梁的建筑有助于
LEED
鉴加分以及绿色节能标志的申请。
诱导比
n
作为衡量主动式冷梁诱导性能的重要指标,其定义为二次风与一次
风的比值,它的大小决定了室内设计温度和送风量是否能够满足空调系统的设计
要求。在相同条件下,诱导比大的主动式冷梁所需一次风量少,空调机组能耗少,
同时,一次风风管尺寸减小,降低了空调系统的投资。由于主动式冷梁的结构
式对诱导性能有较大影响,因此,合理设计主动式冷梁的结构形式提高主动式冷
梁的诱导比,对提高室内舒适性、降低能源消耗、减少系统投资至关重要。本文
主要分析了相关结构参数对主动式冷梁诱导性能的影响,并对主动式冷梁进行了
优化设计。主要研究内容包括以下几个方面:
1)主动式冷梁诱导性能的理论研究:根据气体射流相关理论基础,主要研
究了主动式冷梁的射流结构形式,分析了主动式冷梁射流的轴线流速衰减规律和
流量沿轴线的变化规律,对主动式冷梁诱导性能进行了理论推导与分析,得出主
动式冷梁的诱导性能主要与喷嘴直径、喷嘴间距、喷嘴至送风通道两侧的水平距
离以及送风通道的长度等结构参数相关。根据简化的气体射流理论计算公式,对
所研究的主动式冷梁多股平行受限射流下的诱导比进行了理论计算,得出不同
嘴直径下的诱导比范围,为进一步研究主动式冷梁诱导性能的正确性及合理性提
供了理论依据。
2)主动式冷梁诱导性能的数值研究:利用
FLUENT
软件对主动式冷梁进
行三维建模,并用理论结果与实验结果验证了模型的正确性,在此基础上,研究
分析了射流倾角、喷嘴直径、喷嘴入口角、喷嘴间距和回风面板开孔率单个因素
变化时,主动式冷梁诱导性能的变化规律。结果表明:随着射流倾角的增加,主
动式冷梁诱导比先增加后减小,一次风量变化时,诱导比均在射流倾角为 20°时
取得最大值。随着喷嘴直径的增加,主动式冷梁诱导比逐渐减小,而且喷嘴直径
越大,一次风量的变化对诱导比的影响越不显著,喷嘴直径为 4mm5mm6mm
7mm 8mm 时,诱导比的变化范围分别是:2.95~3.482.56~2.642.13~2.20
1.85~1.86 1.62~1.65随着喷嘴入口角的增加,主动式冷梁诱导比逐渐减小,
嘴入口角从 0°增加至 20°时,喷嘴直径为 4mm 的诱导比从 3.28 减至 2.86随着
喷嘴间距的增加,主动式冷梁诱导比先增加后减小,喷嘴间距在 36mm~72mm
间变化时,主动式冷梁诱导比最大,而且一次风量越大,喷嘴间距越小,诱导性
能越好,反之亦然。随着回风面板开孔率的增加,主动式冷梁诱导比渐增加,
而且一次风量越小,诱导比受开孔率变化的影响程度越显著。
3)主动式冷梁诱导性能的优化研究:根据上述研究结果,选取射流倾角、
喷嘴间距、喷嘴入口角和回风面板开孔率 4个因素,采用正交设计法,共建立 9
种数学模型,计算不同工况下主动式冷梁诱导比和送风速度,通过直观分析法和
方差分析法,探索 4种因素综合变化时,对诱导比和送风速度两种评价指标的影
响程度和最佳设计参数,从而对主动式冷梁的诱导性能进行了优化设计。结果表
明:喷嘴射流倾角为 20°,喷嘴间距为 36mm喷嘴入口角为 0°,回风面板开孔
率为 42%时,主动式冷梁诱导性能最好,喷嘴直径 4mm5mm 6mm 的诱导比
分别达到:3.522.78 2.30
关键词:主动式冷梁 射流理论 诱导性能 数值模拟 正交设计
ABSTRACT
Active chilled beam is a gas-water heat terminal equipment with fresh air induction.
the outdoor air (primary air) handled by the conditioning unit is sent into the inside of
chilled beam, the inside of chilled beam forms a partial vacuum through the nozzle high
speed jet , thereby inducing the indoor air (secondary air) into the chilled beam from the
panel, after the heat exchange with the coil, the secondary air mixing with the primary
air is sent into the room from the outlet of chilled beam. due to its remarkable energy
efficiency, good airflow distribution, comfortable air quality and low noise etc, active
chilled beam system has been defined a green air-conditioning system, it can help
LEED accreditation points and apply green logo of building energy.
Induction ration is a important indicator to measure the performance of active
chilled beam, which is defined the ratio of secondary air and primary air, it determines
the indoor temperature and air volume to meet the design requirements of air
conditioning system. Under the same conditions, the induction ratio is larger, the
primary air required active chilled beam is less, the energy consumption of air
conditioning unit is less, meanwhile, the tube size of primary air decreases and the
investment of air conditioning system is less. Due to the structure form of active chilled
beam has a greater impact on the performance of induction, therefore, the rational
structure is critical to improve indoor comfort, reduce energy consumption and
investment of system. The article analyzes the influence of the structural parameters to
the performance of induction, researches the law of performance of induction, and the
active chilled beam is optimized. The main work of this paper includes the following
aspects:
(1) Study on the theories of the performance of induction of active chilled beam:
According to the theoretical foundation of jet, the jet structure of active chilled beam
was researched, the attenuate law of the axis velocity and the law of the flow variation
along the way were analyzed, there were some theoretical derivation and and analysis
for the performance of induction, the performance of induction was mainly relevant
with the nozzle diameter, the spacing of nozzle, the horizontal distance of the nozzle
center form the both sides of the channel and the length of air channel. According to the
simplified theoretical formula of gas jet, the induction ratio of multiple strands parallel
limited jet was calculated for active chilled beam, the range of induction ratio was
obtained for different diameters, it provided theoretical basis to further study the
correctness and rationality of the performance of induction.
(2) Numerical study on the performance of induction for active chilled beam:The
three-dimensional model was built by FLUENT software, using the theoretical and
experimental results to verify the correctness of the model, on this basis, the law of the
performance of induction was studied, when the individual factors of jet angle, nozzle
diameter, inlet angle of nozzle, spacing of nozzle and opening rate of return air panel
changes. The results showed: With the increasing of jet angle, the induction ratio
increased firstly and decreased, when the primary air was different, the induction ratio
got the maximum value in the jet angle 20°. With the increasing of nozzle diameter, the
induction ratio gradually decreased, and the bigger of the nozzle diameter, in the range
of primary air volume, the change of induction ratio was not more significant, the
nozzle diameter was 4mm, 5mm, 6mm, 7mm and 8mm, the variation range of induction
ratio were: 2.95~3.48, 2.56~2.64, 2.13~2.20, 1.85~1.86 and 1.62~1.65. With the
increasing of inlet angle of nozzle, the induction ratio gradually decreased, when the
inlet angle of nozzle increased from to 20°the induction ratio reduced from 3.28 to
2.86 for the nozzle diameter of 4mm. With the increasing of nozzle spacing, the
induction ratio increased firstly and decreased, when the nozzle spacing changed
between in 32mm~72mm, the induction ratio was maximum, and the more of primary
air volume, the smaller of nozzle spacing, the performance of induction was better. With
the increasing of opening rate, the induction ratio gradually increased, and when
primary air was smaller, the inpact that the variation of opening rate to induction ratio
was more significant.
(3) Study on optimization of active chilled beam: According to the above research
results, the jet angle, the spacing of nozzle, the inlet angle of nozzle and the opening
rate of return air panel were selected, according to the orthogonal design, 9
mathematical models were established, the induction ratio and velocity of active chilled
beam were calculated under different conditions, through the visual analysis and
analysis of variance, the degree of influence and the best design parameters that
different factors to induction ratio and velocity were explorated. The results showed:
when the jet angle was 20°, the spacing of nozzle was 36mm, the inlet angle of nozzle
was 0°, the opening rate of return air panel was 42%, the performance of induction of
active chilled beam was best. the induction ratio of nozzle diameter 4mm, 5mm and
6mm can reach 3.52, 2.78 and 2.30.
Keywords: active chilled beam, the theory of jet, the performance of
induction, numerical simulation, orthogonal design method
中文摘要
ABSTRACT
第一章 绪论 .................................................................................................................... 1
1.1 研究背景 ................................................................................................................ 1
1.2 辐射空调系统分类 ................................................................................................ 2
1.3 主动式冷梁简介 .................................................................................................... 4
1.3.1 主动式冷梁空气处理过程 ............................................................................ 5
1.3.2 主动式冷梁的性能参数 ................................................................................ 6
1.3.3 主动式冷梁系统的特点 ................................................................................ 7
1.4 主动式冷梁研究现状 ............................................................................................ 8
1.4.1 国外研究现状 ................................................................................................ 8
1.4.2 国内研究现状 ................................................................................................ 9
1.5 课题研究意义和内容 .......................................................................................... 10
1.5.1 课题研究的意义 .......................................................................................... 10
1.5.2 课题研究的内容 ........................................................................................... 11
第二章 主动式冷梁诱导性能的理论分析 .................................................................. 13
2.1 气体射流的基本理论 .......................................................................................... 13
2.1.1 射流的分类 .................................................................................................. 13
2.3.2 射流的结构 .................................................................................................. 14
2.3.3 射流微分方程 .............................................................................................. 15
2.2 有限空间射流理论 .............................................................................................. 16
2.2.1 有限空间射流结构 ...................................................................................... 16
2.2.2 有限空间射流动力特性 .............................................................................. 17
2.3 主动式冷梁射流诱导性能理论分析 .................................................................. 18
2.3.1 主动式冷梁射流结构及外边界方程 .......................................................... 19
2.3.2 主动式冷梁轴线流速衰减规律 .................................................................. 20
2.3.3 主动式冷梁流量沿程变化规律 .................................................................. 21
2.3.4 主动式冷梁诱导性能分析 .......................................................................... 23
2.3.5 主动式冷梁诱导比计算 .............................................................................. 26
2.4 本章小结 .............................................................................................................. 28
第三章 主动式冷梁数值模型的建立 .......................................................................... 29
3.1 数值计算方法概述 .............................................................................................. 29
3.2 模型的建立与网格划分 ...................................................................................... 30
3.2.1 主动式冷梁模型建立 .................................................................................. 30
3.2.2 主动式冷梁网格划分 .................................................................................. 30
3.3 计算模型的选择 .................................................................................................. 31
3.4 边界条件的设置 .................................................................................................. 33
3.5 求解控制参数的设置 .......................................................................................... 34
3.6 模型的验证 .......................................................................................................... 35
3.7 本章小结 .............................................................................................................. 38
第四章 主动式冷梁诱导性能数值模拟研究 .............................................................. 39
4.1 射流倾角对诱导性能的影响 .............................................................................. 39
4.2 喷嘴直径对诱导性能的影响 .............................................................................. 43
4.3 喷嘴入口角对诱导性能的影响 .......................................................................... 47
4.4 喷嘴间距对诱导性能的影响 .............................................................................. 51
4.5 开孔率对诱导性能的影响 .................................................................................. 54
4.6 本章小结 .............................................................................................................. 57
第五章 主动式冷梁诱导性能的优化设计 .................................................................. 58
5.1 正交设计的目的与意义 ...................................................................................... 58
5.2 主动式冷梁正交设计方案 .................................................................................. 59
5.3 主动式冷梁正交设计的直观分析 ...................................................................... 61
5.3.1 直观分析法的概念 ....................................................................................... 61
5.3.2 直观分析法的数据分析 ............................................................................... 62
5.4 主动式冷梁正交设计的方差分析 ...................................................................... 67
5.4.1 方差分析的概念 .......................................................................................... 67
5.4.2 方差分析法的数据分析 ............................................................................... 68
5.5 本章小结 .............................................................................................................. 72
第六章 总结与展望 ...................................................................................................... 73
6.1 研究结果总结 ...................................................................................................... 73
6.2 研究工作展望 ...................................................................................................... 75
参考文献 ........................................................................................................................ 76
在读期间公开发表的论文和承担科研项目及取得成果 ............................................ 80
............................................................................................................................ 81
第一章 绪论
1
第一章 绪论
1.1 研究背景
随着国民经济迅速发展,能源消耗增加,短缺问题日益严重根据
家统计局发布的《国民经济和社会发展统计公报》可知[1]
2009
年全国耗能总量
30.66
亿吨标准煤,相比
2008
年增加了
5.2%
2010
年全国耗能总量达到
32.5
亿吨准煤,相
2009
年增加了
5.9%
;截止
2011
年,全国耗能总量达到
34.8
亿吨标准煤,消耗总量比
2010
年增加了
7%
通过近几年的数据可知,我国能耗总量和增幅度都在快速增加源主要
消耗于工业生产、交业以及建筑业。近几年,伴随着建筑行业的迅猛发展,
筑能耗所占比例逐年上升,仅
2013
年消费在建筑上的能耗就高达
亿吨
标准煤,约占能源消耗总量的
28%~30%
[2]因此,在各种节能方式中,通过降低
建筑能耗达到节能目的,是最快捷有效且节能潜力最大的方式。建筑节能
以缓解能源危机带来的严峻挑战,降低能源危机带给社会发展的巨大冲击[3]
随着社会经济水平的提高,在建筑各个部分能中,空调系统所占有的比重
不断升高。以北京地区大型公共建筑为例下表给出了不同使用功建筑物中
各用电设备的耗电情况[4]
1-1 商场耗电比例
商场各系统耗电比例
空调系统
照明系统
电梯
50%
40%
10%
空调系统各设备耗电比例
制冷机
空调箱
冷冻水泵
冷却水泵
冷却塔
23%
65%
5%
6%
1%
1-2 写字楼耗电比例
写字楼各系统耗电比例
空调系统
照明系统
办公系统
电梯
其他
37%
28%
22%
3%
10%
空调系统各设备耗电比例
制冷机
空调箱
冷冻水泵
冷却水泵
冷却塔
供暖泵
上海理工大学硕士学位论
2
30%
45%
8%
6%
2%
9%
1-3 星级酒店耗电比例
星级酒店各系统耗电比例
空调系统
照明系统
办公系统
给排水系统
锅炉系统
电梯
44%
25%
4%
17%
1%
9%
空调系统各设备耗电比例
制冷机
空调箱
风机盘管
冷冻水泵
冷却水泵
冷却塔
供暖泵
25%
38%
10%
11%
5%
1%
10%
通过对北京地区大型商场、写字楼以及星级酒店耗能分析可知,大型公
共建筑中,空调耗能已占到建筑总耗能的 40%~60%由此可见空调系统已成为建
筑中的用能大户,因此空调系统节能是解决能耗危机的重要手段目前,空调系
统的节能途径主要分以下四种[5]
1)改变建筑物围护结构的形式,使其具有良好的保温性,降低室内空调系
统负荷;
2按照建筑物使用功能,设计合理的空调系统,做好空调管路的保温工作,
提高空调系统的运行效率;
3)提高空调系统的运行控制水平,保证系统高效率运行;
4加快能源回收利用、可再生能源以及低品位能源空调系统的应用推广。
目前,随着生活质量提高,舒适性和洁净度是否能够达到室内环境要求,
也成为人们关注的话题。为了缓解能源消耗紧张问题,降低建筑能耗中的空调能
耗,同时满足人们对空调房间的舒适性以及空气品质要求,研究发展节能、舒适
的空调系统成为重中之重,在这样的要求下,辐射空调系统应运而生。
1.2 辐射空调系统分类
辐射空调是通过减少增加房间围护结构表面温度,从而形成冷辐射面或
热辐射表面,与房间内的围护结构、人体、办公用具等表面以辐射的方式进行
热。辐射面可以通过多种方式来实现,根据安装要求,可以在围护结构中敷设冷
盘管或热盘管,也可以在在天花板以及墙体外表面设置辐射板[6]由于辐射面、围
护结构、人体以及办公用具等温度的变化,使得各个表面和空气之间的对流换热
效果增强,提高了供冷和供暖效果,一般来讲,辐射空调系统中,辐射占总换热
量的
50%
以上。辐射空调作为一种低耗能的空调系统,不仅具有节能、美观、舒
适的特点,而且还能与建筑物良好结合,可见其发展潜力巨大[7]
摘要:

摘要主动式冷梁是一种带新风诱导的气—水换热末端设备。由空调机组处理的室外新风(一次风)被送入冷梁内,经过喷嘴的高速射流在冷梁内部形成局部负压,从而诱导室内空气(二次风)从回风面板进入冷梁内,与盘管进行热交换,冷却或加热后的二次风与一次风混合,最终经送风通道进入室内。主动式冷梁系统由于其显著的节能效益、良好的气流组织分布、舒适的室内空气品质以及低噪音等优点,已被定位新世纪的绿色空调系统,采用主动式冷梁的建筑有助于评鉴加分以及绿色节能标志的申请。诱导比作为衡量主动式冷梁诱导性能的重要指标,其定义为二次风与一次风的比值,它的大小决定了室内设计温度和送风量是否能够满足空调系统的设计要求。在相同条件下,...

展开>> 收起<<
主动式冷梁诱导性能研究与优化设计.pdf

共86页,预览9页

还剩页未读, 继续阅读

作者:侯斌 分类:高等教育资料 价格:15积分 属性:86 页 大小:2.33MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 86
客服
关注