基于WSN的葡萄生长因子分析支持系统研究

VIP免费
3.0 牛悦 2024-11-19 4 4 1.85MB 67 页 15积分
侵权投诉
摘 要
随着经济和科技的不断发展,现代农业中的科技含量在不断的提高。而温室作
精细农业的重要组成部分,为植物提供更合理可控的环境条件,在农业中得到了越来
越广泛的运用。通过技术实现使温室内土壤的温湿度、PH 值、微元素含量,空气的温
湿度、CO2 浓度以及光照强度等环境参数自动调节到植物生长所需的最佳值,提高作物
的品质和产量。随着无线传感器网络和物联网等无线信息技术的不断发展,这种无基
础设施的无线自组织网络能够协同地实时感知、监控、收集,转发网络覆盖区域内的
所有环境参数和监测对象的信息,并通过无线多跳路由的方式接收发送数据。因此很
适合温室农业和精细农业的需求。
无线传感器网络由大量的传感器节点组成,节点通常分为全功能节点(FFD)和
精简功能节点(RFD)。全功能节点提供成员关系管理、链路信息管理以及数据接收与转
发等功能。精简功能节点通常只提供简单的数据接收和转发功能。本文用到的实验平
台是基于 Crossbow 提供的实验装置。每个管理节点管理最多 4 个传感器设备,传感器
设备负责收集环境参数数据。每个管理节点之间可以通过单跳或多跳方式进行通信并
连接到基站。管理节点负责将下属传感器设备采集的数据以及各种状态信息传送到基
站进行管理。基站通过 USB 端口连接一个无线接收装置,负责接收和转发信息。基站
上运行 Debian Linux 操作系统,并通过一些管理机制管理整个网络的正常运行。
本文首先分析在感知半径可调情况下,节点采用何种方式睡眠达到权衡覆盖
率和能量负载均衡水平。提出一种自适应调节感知半径冗余节点睡眠算法(Adaptable
Adjust Sensing range Redundant node Sleeping algorithm,AASRS)
线传感器网络基于特定应用实现的异构性和海量数据的特性,分析一个或多个同构或
线了 PMCS(Parallel
Monitoring and Control System)机制,用于监多个特定 WSN 网络基站的数据接收
和转发请求,同时对 XML 格式的数据进行解析,将有效数据存储到 Oracle 数据库中,
以便于 WEB 端应用程序的开发。这种机制实现异构数据的灵活配置和多基站服务请求
的及时响应和协同管理。最后以马陆葡萄园为实现环境,搭建一个用于监控温室葡萄
生长环境信息的无线传感器网络,实现了相关功能。本文提供一个基于 WSN 的葡萄生
长因子分析支持系统,方便了对葡萄种植的管理的同时提高了产品的品质和产量,达
到我们期望的目标。
关键字:无线传感器网络;葡萄; 生长因子; AASRS; PMCS
ABSTRACT
With the continuous development of economy and technology, the percentage of
science and technology in modern agriculture continues to increase. The Greenhouse as an
important part of precision agriculture, to provide a more rational control of plants’ growing
environmental conditions in agriculture has been more widely used. By technology, it can
implements that the temperature ,humidity, PH value and micro-element content of soil, air
temperature and humidity, CO2 concentration and light intensity and other environmental
parameters automatically adjust to the optimum value required for plant growth, improve the
quality and yield of plants. With the continuous development of Wireless sensor networks
and Internet of things technology, this kind of wireless self-organizing network that without
infrastructure can collaboratively sensing, monitoring, collecting, forwarding all
environmental parameters within the area that network covered and information of
monitored objects. It sending and forwarding data by wireless multi-hop routing. So it is very
suitable for greenhouse agriculture and precision agriculture needs.
Wireless sensor network consists of a large number of sensor nodes. The nodes are usually
divided into full function node (FFD) and reduced function node (RFD). Full unction node
provides functions such as the membership management, information management and the
link information management and data reception and forwarding. Reduced function node
usually only provide simple data reception and forwarding. Experimental platform used in
this paper is based on apparatus provided by Crossbow. Each management node can manage
up to four kinds of sensors. Each sensor device is responsible for collecting data of
environmental parameters. Between each management node, they can communicate through
single hop or multi-hops and connect to the base station. Management node is responsible for
transmit the data collected by the sensor devices that belong to it and a variety of status
information to the base station for management. The base station connects to a wireless
receiver device through an USB port and is responsible for receiving and forwarding
messages from management nodes. The base station is running on Debian Linux operating
system and managing the entire network work correctly by some management mechanisms.
This paper first analyzed in case of the perception of adjustable radius, the manner in
which sleeping nodes adopted to balance the coverage rate and the level of energy load
balancing. This paper proposed an adaptive sleep algorithm for the redundant nodes
(Adaptable Adjust Sensing range Redundant node Sleeping algorithm, AASRS).Second, on
account of the characteristics of wireless sensor network that the heterogeneity of specific
application implementation and massive data, this paper analyzes a scenario that have one or
more homogeneous or heterogeneous wireless sensor networks for data collection and
forwarding and the problem of how they are collaboratively worked, achieves the PMCS
(Parallel Monitoring and Control System) mechanism to monitor one or more requests from
specific WSN base stations for data reception and forwarding, while parsing XML formatted
data and storing the valid data into the Oracle database, in order to facilitate the development
of WEB client applications. This mechanism implements flexible configuration of
heterogeneous data and the timely response to service requests and collaborative
management from one or more base stations. Finally, take the Malu vineyard as the
experimental environment we built a Wireless sensor network that used to monitoring the
growing environment parameters information of grape and realized the related functions.This
paper providing a grape growth factor analysis and support system based on WSN. It
facilitates the management of grapes’ growing surveillance at the same time it improves
product’s quality and yield .So our desired goals achieved.
Keywords: Wireless sensor networks; grape; growth factors; AASRS;
PMCS
目录
摘 要
ABSTRACT
第一章 绪论 .......................................................... 1
§1.1 课题研究背景 ............................................... 1
§1.1.1 无线传感器网络的发展 ................................... 1
§1.1.2 无线传感器网络的应用 .................................. 1
§1.1.3 物联网技术的发展 ...................................... 2
§1.2 在智能农业中的研究现状 ...................................... 3
§1.3 研究思路及意义 .............................................. 6
§1.3.1 研究思路 ............................................... 6
§1.3.2 研究意义 .............................................. 6
§1.4 论文内容与组织结构 .......................................... 7
第二章 无线传感器网络关键组成与技术分析 .............................. 9
§2.1 路由协议 .................................................... 9
§2.1.1 以数据为中心的路由协议 ................................. 9
§2.1.2 集群结构的路由协议 .................................... 12
§2.1.3 地理位置信息的路由协议 ................................ 13
§2.2 MAC 协议 ................................................... 14
§2.2.1 竞争型 MAC 协议 ........................................ 15
§2.2.2 分配型 SMACS 协议 ...................................... 16
§2.2.3 混合型 ZMAC 协议 ....................................... 18
§2.3 本章小结 ................................................... 19
第三章 实验平台和系统配置 ........................................... 20
§3.1 传感器节点配置 ............................................. 20
§3.1.1 普通节点硬件 .......................................... 20
§3.1.2 基站节点硬件 .......................................... 21
§3.1.3 网络中的传输包结构 .................................... 22
§3.2 服务层实现机制 ............................................. 22
§3.1.1 XServe 机制 ........................................... 22
§3.1.2 XCommand 机制 ......................................... 23
§3.3 数据库配置 ................................................. 24
§3.4 系统运行流程 ............................................... 25
§3.5 本章小结 ................................................... 26
第四章 基于可调感知半径节点睡眠算法分析 ............................. 27
§4.1 问题定义 ................................................... 27
§4.1.1 基本前提条件 .......................................... 28
§4.1.2 拓扑和性能分析 ........................................ 28
§4.2 AASRS 算法描叙 ............................................. 30
§4.2.1 相关概念定义 .......................................... 30
§4.2.2 冗余节点的判断规则 .................................... 31
§4.2.3 自适应调节感知半径冗余节点睡眠算法(AASRS) ............. 32
§4.3 性能评价 ................................................... 32
§4.4 本章小结 ................................................... 34
第五章 PMCS 机制分析 ................................................ 35
§5.1 PMCS 工作原理 .............................................. 35
§5.1.1 相关定义与网络结构 .................................... 35
§5.1.2 Crossbow 实验平台介绍 ................................ 36
§5.1.3 PMCS 功能设计 ........................................ 37
§5.2 PMCS 实现关键 .............................................. 38
§5.2.1 CA 配置文件和数据格式配置文件 ......................... 38
§5.2.2 主要实现函数之间的调用关系说明 ........................ 38
§5.3 实验结果与优点分析 ......................................... 39
§5.4 本章小结 ................................................... 40
第六章 分析支持系统的详细设计与实现 ................................. 41
§6.1 分析支持系统的工具函数代码实现 ............................. 41
§6.1.1 错误处理函数 .......................................... 41
§6.1.2 长度转换函数 .......................................... 43
§6.1.3 Sokcet 套接字包裹函数 ................................ 45
§6.2 主要功能函数代码实现 ....................................... 46
§6.2.1 XML 数据包读取函数 ................................... 46
§6.2.2 XML 格式数据解析函数 .................................. 46
§6.2.3 数据库操作函数 ........................................ 48
§6.2.4 建立 TCP 连接函数 ..................................... 50
§6.3 libxml2-devel 和 libsqlora8 介绍 ............................ 51
§6.4 实现结果和功能 ............................................. 53
§6.4.1 系统实现 ............................................. 53
§6.4.2 功能介绍 ............................................. 53
§6.5 本章小结 ................................................... 56
第七章 总结与展望 ................................................... 57
参考文献 ............................................................ 59
作者在读期间科研成果简介 ............................................ 62
致谢 ................................................................ 63
第一章 绪论
1
第一章 绪论
§1.1 课题研究背景
§1.1.1 无线传感器网络的发展
信息的生成、获取、存储、传输、处理及其应用是现代信息科学的六大组成部分。
如何及时高效地获取物理世界的信息是现代技术发展的重要组成部分。随着现代集成
技术和网络技术的快速发展,诸如微机电系统(MEMS、片上系统 SoC、无线通信技
术、移动处理技术、嵌入式系统技术等发展。使得无线传感器网络和物联网出现和发
展。传感器发展开始多元化,一部分功能的传感器开始向微型化,集成化和智能化演
化。这些传感器像微尘一样组成互相连接的网络来获取物理世界的信息。
这些微小的传感器节点由特定功能传感器模块、处理器和无线通信模块组成。
们可以通过无线自组织的方式构成 Ad Hoc 网络。网络中普通的节点可以由各式各样功
能的测量预定目标参数的传感器构成。这些传感器可以用来测量给定应用环境的温度、
湿度、声音、图像、土壤成分、空气成分、光照度、辐射强度、加速度、雷达、声纳、
超声波等信息,通过对获取数据的分析得到对环境变化和状况的信息。节点通常可以
采用蓝牙、红外、WLAN 等无线通信方式,也可采用有线、光传输等通信方式,需要
根据实际的需要进行选择。业界公认认为短距离的无线低功率通信技术如 Zigbee
6LoWPAN 等最适合无线传感器网络的使用。
无线传感器网络的最早开始于上个世纪 70 年代军事领域的研究中,像冷战时期的
声音监测系统(SOSUS)以及空中预警与控制系统(AWACS1980 年美国国防部高
级研究计划局的分布式传感器网路项目(DSNDistribute Sensor Networks)开启了现
代传感器网络研究的先河。TCP/IP 协议发明人之一,时任 DARPA 信息处理技术办公
室主任的 Robert Kahn 主导了该项目[1],起初设想建立一个由空间分布的低功耗传感器
节点构成的网络,这些节点之间相互协作但自主运行,将数据传送到需要处理它们的
节点。
80~90 年代,传感器网络的研究还是主要在军事领域进行,并成为网络战中心思
想的关键技术。现在无线传感器网络已经广泛运行于各个领域,下一节将说明。
§1.1.2 无线传感器网络的应用
1.军事领域
鉴于无线传感器网络在军事应用的巨大作用,现在很多国家的军事行政机构、
事和工业制造业和学术机构都对无线传感器网络的研究产生浓厚的兴趣,也进行了大
摘要:

摘要随着经济和科技的不断发展,现代农业中的科技含量在不断的提高。而温室作为精细农业的重要组成部分,为植物提供更合理可控的环境条件,在农业中得到了越来越广泛的运用。通过技术实现使温室内土壤的温湿度、PH值、微元素含量,空气的温湿度、CO2浓度以及光照强度等环境参数自动调节到植物生长所需的最佳值,提高作物的品质和产量。随着无线传感器网络和物联网等无线信息技术的不断发展,这种无基础设施的无线自组织网络能够协同地实时感知、监控、收集,转发网络覆盖区域内的所有环境参数和监测对象的信息,并通过无线多跳路由的方式接收发送数据。因此很适合温室农业和精细农业的需求。无线传感器网络由大量的传感器节点组成,节点通常...

展开>> 收起<<
基于WSN的葡萄生长因子分析支持系统研究.pdf

共67页,预览7页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:67 页 大小:1.85MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 67
客服
关注