匀质化数值模型中砌体材料破坏准则的实验研究

VIP免费
3.0 侯斌 2025-01-09 16 4 31.69MB 97 页 15积分
侵权投诉
目前,现有的针对砌体结构的模拟方法主要括连续介质理论的有限单元法
和基于块体集合理论的离散单元法。但是,前者尚不能很好模拟砌体中裂缝发展的
过程及开裂后构件的性能,而后者面临在低应力水平时计算精度不高、结构分析耗
时较长等困难。因此,文章基于前两种方法,利用匀质化思想,选取具有相同组砌
特点的等效体积单元(Representative Volume Element RVE)作为“连续材料”
建模。从砌体多尺度上对破坏准则进行研究,其破坏准则由材料尺度的物理特点,
即砂浆强度、块体强度和砌体组砌方式确定。
研究的主要内容与成果有:
1)考虑三种砌筑方式、两种灰缝厚度,分别对砌体试件进行了抗压性能实
验。从砂浆灰缝厚度以及砌筑方式的改变来研究其对砌体抗压性能的敏感性影响。
实验结果表明,砌体的抗压强度随水平灰缝所占提价百分比的增大而减小。全顺式
砌筑的砌体(本文中的方式 2抗压强度较低;在规范允许的砂浆灰缝厚度下限值
之上且砌筑条件相同时,灰缝厚度越大,抗压强度越低。
2)在已获得的试件抗压强度的基础上,考虑 9种压剪应力状态的影响,通
过特别设计的夹具对砌体试件进行了压剪承载性能实验。根据实验结果将砌体材
料的破坏分为剪磨、压剪和斜压三种形式,获得了其在压剪状态下的完整破坏曲线。
由实验结果知,压力的大小对砌体的压剪破坏影响显著,其破坏可分为剪摩、剪压
和斜压三种形式。在剪压和斜压破坏中,裂缝均会贯穿块体。
3基于砌体试件抗压强度以及压剪相关曲线,按照匀质化理论对所选取的
普通烧结砖砌体等效体积元RVE进行压剪相关曲线的回归, 并对其进行 RVE
砌体压剪承载性能的定性分析。当 σy / f m<0.4 发生剪磨破坏,当 0.4<σy / f m<0.68
时发生剪压破坏,而当 σy / f m>0.681.0 时发生斜压破坏。
4综合考虑实验破坏曲线的形态和数值模拟对破坏面光滑性的要求,发现
Drucker-Prager 准则适用于描述砌体材料的压剪破坏,其参数可由实验结果进行标
定。将标定后的 Drucker-Prager 准则应用于等效体积单元模型,对砌体试件受压实
验和砌体墙片伪静力实验进行了数值模拟,模拟结果与实验结果符合程度较好。
有限元模型中单元的大小与压剪试验试件大小接近,即满足 RVE 模型的条件时,
其计算结果更接近试验结果。不同砌筑方式的砌体,压剪破坏形态有差异,其对应
DP 破坏准则的参数不相同。在受压状态下,砌筑方式对破坏准则的影响比在压剪
状态下更明显。
关键词:砌体 破坏准 等效体积单元 Drucker-Prager 准则 值模
ABSTRACT
At present, the existing simulation method of masonry structure mainly includes
the theory of continuous medium finite element method and discrete element method
based on block set theory. However, the former has not yet been a good simulation of
masonry cracks after cracking the progress and performance of components, and the
latter is facing a low stress level accuracy which is not high, structural analysis taking
a long time and other difficulties. Therefore, the article based on the first two methods
and homogenized thought,it chooses a representative volume element which has the
same group of masonry features as "continuous material" modeling. To study the failure
criteria from masonry multitudes, which are by the physical characteristics of the
material dimension, namely the strength of mortar, masonry block body strength and
masonry way.
The main contents of the research are as follows:
1Consider three types of masonry, two kinds of mortar joint thickness,
respectively, masonry specimen are taking compressive performance experiment. The
sensitivity effect on the compressive properties of masonry is studied from mortar joint
thickness and the change of masonry.
2Taking into account the influences of the bricklaying, the depth of the mortar
bed, and the shear-compressing ratio is conducted through a special clamp. The failure
of the specimen is ranked based on the test results into 3 types, i. e., the shear-friction
failure, the shear-compression failure, and the diagonal compressive failure, and
integral failure curves for the specimen under combined shear and compression are
established.
3The failure criteria with existing masonry structures compare with
compression and shear curve based on the test to finally obtain the failure criterion of
complete RVE unit, and give the corresponding expressions.
4Considering the test results and the smoothness of the failure surface. The
Drucher-Prager criteria are suitable for describing the damage of masonry, and the
parameters in the criteria can be calibrated by the test results. The calibrated Drucher-
Prager criteria are used in RVE models, by which the compressive tests and pseudo-
static tests for masonry specimen are simulated. The simulated results are in good
agreement with the test results. The research procedure and findings can be sent back
in numerical analysis for masonry structures.
Key Word: masonry, shear-compression failure, representative volume
element RVE , Drucker-Prager criteria, numerical
simulation
中文摘要
ABSTRACT
第一章 绪论 ............................................................................................................ 1
1.1 引言 ................................................................................................................ 1
1.2 研究现状 ........................................................................................................ 2
1.2.1 经典强度理论与砌体破坏准则 ............................................................... 2
1.2.2 砌体数值分析研究现状 ........................................................................... 5
1.2.3 砌体的匀质化思想的提出 ....................................................................... 7
1.3 本文的主要研究内容 ..................................................................................... 8
第二章 砌体试件抗压性能实验研究 .................................................................... 10
2.1 砌体抗压性能实验 ...................................................................................... 10
2.1.1 试件的设计与制作 ................................................................................ 10
2.1.2 实验装置及实验过程............................................................................. 12
2.2 砌体试件抗压性能实验结果 ....................................................................... 17
2.2.1 破坏形态 ................................................................................................ 17
2.2.2 实验结果评定 ........................................................................................ 19
2.2.3 试件抗压性能影响因素分析 ................................................................. 20
2.3 小结 .............................................................................................................. 23
第三章 砌体压剪承载性能实验研究 .................................................................... 24
3.1 砌体压剪承载性能实验 .............................................................................. 24
3.1.1 试件的设计与制作 ................................................................................ 24
3.1.2 实验装置 ................................................................................................ 24
3.1.3 实验过程 ................................................................................................ 25
3.2 砌体压剪承载性能实验结果及分析 ........................................................... 26
3.2.1 破坏形态 ................................................................................................ 26
3.2.2 实验结果评定 ........................................................................................ 29
3.3 小结 ............................................................................................................. 32
第四章 砌体 RVE 压剪强度分析 .......................................................................... 33
4.1 实验数据与已有压剪相关曲线的回归方式的比较 ..................................... 33
4.1.1 无帽处理的回归方式............................................................................. 33
4.1.2 加帽处理的回归方式............................................................................ 36
4.2 砌体 RVE 的压剪相关曲线的回归 ............................................................. 40
4.2.1 摩擦系数 μ值和峰值点位置的选取 ..................................................... 41
4.2.2 砌体 RVE 的压剪相关曲线的回归的表达式 ........................................ 42
4.3 砌体 RVE 压剪承载性能的分析 ................................................................. 46
4.4 小结 .............................................................................................................. 46
第五章 砌体抗压性能实验与砌体匀质化模型数值分析的对比验证 .................. 48
5.1 砌体抗压性能实验 ....................................................................................... 48
5.1.1 砌体抗压性能实验研究方案 ................................................................. 48
5.1.2 砌体抗压性能实验结果 ........................................................................ 49
5.2 砌体有限元模型的建立 .............................................................................. 50
5.2.1 单元类型 ............................................................................................... 51
5.2.2 屈服准则及材料本构关系 .................................................................... 51
5.2.3 模型建立与网格划分............................................................................ 52
5.2.4 加载及求解设置 ................................................................................... 53
5.2.5 有限元分析模型的验证 ........................................................................ 54
5.3 数值模拟与实验结果的对比分析 ............................................................... 56
5.3.1 不同组砌方式标定的 DP 准则参数对数值模拟结果的影响 ............... 56
5.3.2 不同网格划分对数值模拟结果的影响 ................................................. 57
5.4 影响砌体抗压性能数值模拟结果的 DP 准则参数分析 ............................. 60
5.4.1DP 准则参数的影响 ............................................................................... 60
5.4.2DP 准则参数的影响原因分析 ................................................................ 61
5.5 小结 .............................................................................................................. 62
第六章 无筋砌体墙伪静力实验数值模拟 ............................................................ 64
6.1 无筋砌体墙伪静力实验 ............................................................................... 64
6.1.1 试件设计与制作 .................................................................................... 64
6.1.2 测点布置及量测内容............................................................................. 66
6.1.3 加载制度 ................................................................................................ 67
6.1.4 实验结果 ................................................................................................ 69
6.2 不同材料间 DP 准则参数的换算 ................................................................. 70
6.2.1 内摩擦角的换算 .................................................................................... 71
6.2.2 粘聚力的换算 ........................................................................................ 71
6.2.3 膨胀角的换算 ........................................................................................ 72
6.3 砌体有限元模型的实验验证 ........................................................................ 72
6.3.1 砌体有限元模型的建立 ......................................................................... 72
6.3.2 结果的分析 ............................................................................................ 74
6.4 小结 .............................................................................................................. 77
第七章 结论与展望 ............................................................................................... 78
7.1 结论 .............................................................................................................. 78
7.2 展望 .............................................................................................................. 79
附录 ........................................................................................................................ 80
参考文献 ................................................................................................................ 89
在读期间公开发表的论文和承担科研项目及取得成果 ....................................... 91
一、论文 ............................................................................................................ 91
二、专利 ............................................................................................................ 91
三、科研项目..................................................................................................... 91
致谢 ........................................................................................................................ 92
第一章 绪论
1
第一章 绪论
1.1
砌体是由砂浆和块体共同组成的复合建筑材料。它不仅广泛使用于我国既有
建筑物中,也被世界各国所采用,如图 1-1 所示。
a)凯旋门 b)长城
1-1 历史著名的的砌体结构
砌体这种结构形式造价低廉,施工技术较为简单,符合当前结构工程发展和改
革的需要,具有可观的经济效益和强大的发展前景。因此,为保障建筑物的安全性
和可靠性,预测砌体结构在实际使用过程的破坏情况,进一步完善砌体破坏准则,
在既有的砌体结构中的应用具有十分重要的意义。
对于既有的砌体结构而言,由于砌筑方法多样性、结构形式多变性等原因,使
得它在承受荷载时其各组分相互作用复杂[1-2]
在进行既有砌体结构的模拟分析时,基于连续介质理论的有限单元法和基于
块体集合理论的离散单元法均取得了重要的成[3-5]。但当前有限单元法尚不能很
好模拟砌体中裂缝发展的过程及开裂后构件的性能,而离散单元法则面临在低应
力水平时计算精度不高、不能模拟块体的破坏、结构分析耗时较长等困难。为解决
问题,研究多尺度的计算方法具有重要意义[6-7]。这种方法的有效实现方式之一,
是在构件或结构尺度进行数值分析时,将砌体作为“连续材料”建模(砌体的匀质
化思想)而这种“连续材料”由具有相同组砌特点的等效体积单元Representative
Volume Element
RVE构成,其破坏准则由材料尺度的物理特点,即砂浆强度、
块体强度和砌体组砌方式确定。
上海理工大学硕士学位论文
2
在各种工况下,结构构件中的砌体材料大多处于平面压剪应力状态。本课题旨
在根据块体和砂浆组砌方式的周期性特点,选取典型组砌方式下的重复单元设计
试件,并开发专门的夹具进压剪实验。根据实验结果,对已有的破坏准则进行修正
和补充。所获得的破坏准则反映了材料尺度的真实破坏特征,可在构件或结构尺度
的分析模型中,赋予砌体等效体积元(RVE,为实现多尺度的计算提供基础。
1.2 究现
1.2.1 经典强度理论与砌体破坏准则
强度理论是砌体破坏准则的依据。即,它通过对材料在各种复杂应力下所产生
脆性破坏或屈服等状态的分析,为结构的设计提供了理论基础。强度理论从 19
纪发展至今,已形成了众多不同的理论;面对砌体这种非匀质材料,它因组砌方式
各异而呈不同的破坏形态以及各向异性;为此,以强度理论作为理论基础,建立准
确完整的破坏准则具有相当大的难度。下面就国内外的经典强度理论及现有的砌
体破坏准则进行了归纳。
1)经典强度理论
aMohr-CoulombMC)准则[2]
MC 准则认为,当受力单元体的某一平面上的剪应力达到某一限值时,材料沿
该平面发生滑移破坏。该准则对应实验中砌体单元出现得剪摩破坏状态,即在压剪
比较小的情况下使用,其抗剪强度表达式为:
0
v v y
f f
 
y
以受压为正) 1-1
式中
0
v
f
为垂直压应力为 0时,砌体沿通缝的抗剪强度
为砌体的摩擦系数。
我国自 20 世纪 70 年代以来对砌体抗剪强度开展了一系列的实验研究,以此
为基础,《砌体结构设计规范》GBJ3-88)确定
值取 0.4。但该准则与砌体墙在
正应较高时抗剪强度降的实际况并不相符,此这种强度理论存在着
定的不足。
b.主拉应力强度理论
主拉应力强度理论认为材料的断裂决定于最大拉应力,具体表达式为: 1
 
平面应力状态下材料的主拉应力可以通过摩尔圆对双轴应力分析求得(正应力受
拉为正)
2 2
1( )
x x
xy
y y
 
 
 
  1-2
第一章 绪论
3
但是在实际工程之中,主拉应力强度理论并不能解决砌体墙在受力出现斜裂
缝以及裂缝贯通后仍然能够承受荷载这一现象。
cDrucker-PragerDP)准则[8]
DP 准则假设材料为理想弹塑性,无强化规律;流动法则可以使用相关流动法
则和不相关流动法则,需输入三个参数:粘聚力
c
、内摩擦角
和膨胀角
f
DP 准则,其通用表达式为:
1 2
F I J k
 
1-3
式中
1
I
为第一应力不变量,
1 1 2 3
I
 
 
2
J
为第二应力偏量不变量,
2 2 2
2 1 2 2 3 3 1
1
{( ) ( ) ( ) }
6
J
 
 
1 2
F I J k
 
是与岩石材料内摩擦角
有关的常数;
k
是与内凝聚力
c
有关的常数。
k
根据不同的情况可有以下四种表达式:
伸长锥
 
2 sin
3 3 sin
 
6 cos
3 3 sin
c
k
压缩锥
 
2sin
3 3 sin
 
6 cos
3 3 sin
c
k
内切锥
2
sin
3 3 sin
2
3 cos
3 3 sin
c
k
等面积锥
 
2
2 3 sin
2 3 9 sin
 
 
2
6 3 cos
2 3 9 sin
c
k
 
DP 屈服准则是修正的 von Mises 准则,它作为 MC 准则对应六边形的外接圆,
用以逼近 MC 准则。因为 DP 准则主应力空间的屈服面为光滑圆锥,所以它能够很
好地解决 MC 准则因为主应力空间的对应屈服面为六角锥面所以导致的不连续性,
以及所引起的塑性应力应变关系的数值实现困难的问题。该准也有一定的局限性,
它虽然能很好的预测结构初始的裂缝,但它难预测模型的破坏形态。
匀质化数值模型中砌体材料破坏准则的实验研究.pdf

共97页,预览10页

还剩页未读, 继续阅读

作者:侯斌 分类:高等教育资料 价格:15积分 属性:97 页 大小:31.69MB 格式:PDF 时间:2025-01-09

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 97
客服
关注