CO2热泵热水器中翅片管式蒸发器的研究

3.0 牛悦 2024-11-11 4 4 3.46MB 77 页 15积分
侵权投诉
I
摘要
随着人们生活水平的日益提高,人们的环保意识越来越强,并且对舒适性的
要求也越来越高。由于 CFCs 类制冷工质会对臭氧层的破坏和产生的温室效应等环
境问题,人们重新重视自然工质的利用。CO2作为自然工质之一,具有良好的热物
性,比传统工质有很大的优势,CO2在很多方面都有很好的应用前景,尤其在热泵
方面的应用。采用 CO2作为制冷剂的热泵热水器在日本已经广泛使用,但在国内
还没有成熟的产品,对 CO2作为制冷剂的研究仍处在理论和实验阶段。
本课题主要是针对小型 CO2热泵热水器进行研究,通过理论与实验相结合的
方法对翅片管式蒸发器进行研究,为热泵热水器的实际的应用提供理论依据和实
验数据,具有一定的实用价值。
本课题主要研究内容是:研究外部环境和内部运行参数对蒸发器性能和系
性能的影响,在不同工况(名义工况、夏季工况、冬季工况)下进行实验研究,
分析外部环境和内部运行参数对二氧化碳热泵热水器的性能的影响;并在名义工
况条件下,改变进水流量、进水温度,分析对系统内部性能的影响和对蒸发器整
体性能的影响;并研究冬季工况下制热条件下,结霜对系统性能的影响;通过专
用的模拟软件 EVAP-COND V3.0 软件对翅片管蒸发器进行模拟分析。
理论分析得出:制冷剂侧表面传热系数随着制冷剂的质量流率和热流密度
增加而逐渐增大。实验数据分析得出:随着蒸发温度逐渐增加,蒸发器侧换热量
逐渐增加;系统的性能系数也随之增加。但在不同的进水流量下,随着进水流量
的增加,蒸发器侧换热量逐渐增加,系统的性能系数也随之升高;随着进水温度
的增加,蒸发器侧的换热量逐渐减小,系统的性能系数随着进水温度的增加也逐
渐降低。
本课题研究的实验结论是:CO2热泵热水器系统在三种工况条件下,可以制取
较高温度(65℃以上)的热水,符合国标《家用和类似用途热水器》的标准。在
三种运行工况下,夏季工况的系统性能系数 COP 最高,约为 4.5 以上;名义工况
次之,系统的性能系数 COP 3.8 以上,冬季工况最低,系统的性能系数 COP
3.2
关键词:CO2跨临界循环 热泵热水 翅片管式蒸发器 结霜
II
ABSTRACT
With the improvement people's living standards, people pay much attention to the
environmental protection, and demand the comfort of our living. It brings a new
importance to use the natural refrigerants becase the traditional refrigerants CFCs
caused ozone depletion and house effect and other environmental problems. CO2 is as
one of the natural refrigerants, used in refrigerating equipments with the nature of the
good of thermophysical properties and transcritical cycle. CO2 trans-critical has used in
many good prospect of application, especially in the heat pump applications; there are
great advantages than the traditional working fluid. The use of CO2 heat pump water
heaters have been a lot used in Japan, but in our country it CO2 as a refrigerant is not yet
a mature product, still in the theoretical and experimental stages.
The main subject of small CO2 heat pump water heater is a experimental study;
The points of the research have focused on CO2 heat pump water heater heat exchanger,
carried out reseach on finned-tube evaporator by theoretical and experimental method,
to provide a theoretical basis and practical value for future commercial aircraft.
The main subject of researches: study of the external environment and internal
operating environment parameter changes affect the performance of the evaporator and
system performance, different experimental conditions (nominal conditions, summer
conditions, winter conditions), the analysis of externalenvironment and internal
operating environment of carbon dioxide heat pump water heater performance; And
under the nominal working conditions, we analyze the impact on system performance
and effects on the overall performance of the evaporator with changing in water flow,
water temperature; frost impact on system performance and study the heating
conditions; EVAP-COND V3.0 software on a dedicated simulation software to
simulate the finned tube evaporator analysis.
Theoretical analysis: side surface coefficient of heat transfer of refrigerant
gradually increases as the refrigerant mass flow rate and the heat flow density increase.
Experimental data analysis: the evaporator side heat transfer increases gradually with
the evaporation temperature increasing; the performance of the system coefficient also
increases. But under different water flow, with the increase of feed flow rate, the
evaporator side heat transfer increases gradually, the performance of the system
coefficient also increases; with the increase of feed temperature and evaporator side
III
heat transfer gradually decreases, and the performance of the system coefficient with
the increase of inlet temperature is gradually reduced.
Experimental conclusions of the research showed that CO2 heat pump water
heater system can run normal under all the different seasonswork conditions, and the
high temperature hot water system can be produced more than 65 . Hot water will
meet the requirements. In running summer conditions, the coefficient of performance
COP is the highest, values above 4.5; followed by the nominal conditions, COP is 3.8;
the lowest is in winter conditions, which values is able to more than 3.2.
Key WordsCO2 trans-critical cycleheat pump water heaterfinned
tube evaporatorfrosting
IV
摘要
ABSTRACT
第一章 ............................................................................................................... 1
1.1 课题研究背景与意义 ........................................................................................ 1
1.1.1 二氧化碳制冷剂的发展 .............................................................................. 1
1.1.2 制冷工质的替代方向 .................................................................................. 2
1.1.3 二氧化碳制冷剂的应用领域 ...................................................................... 3
1.2 国内外研究现状 ................................................................................................ 4
1.2.1 空气源热泵热水器的发展 .......................................................................... 4
1.2.2 二氧化碳热泵热水器的发展 ...................................................................... 5
1.2.3 二氧化碳热泵热水器各部件的研究 .......................................................... 7
1.2.4 二氧化碳系统仿真模拟进展 .................................................................... 12
1.3 本课题研究内容 .............................................................................................. 14
第二章 二氧化碳的换热特性和循环性能的理论研究 ........................................... 16
2.1 二氧化碳的物理性质 ...................................................................................... 16
2.2 二氧化碳的流动与换热特性 .......................................................................... 17
2.2.1 普通管内亚临界强迫对流沸腾换热特性 ................................................ 17
2.2.2 微通道管内亚临界强迫对流沸腾换热特性 ............................................ 18
2.2.3 亚临界强迫对流沸腾换热系数实验关联式 ............................................ 19
2.2.4 强迫对流沸腾流动压降关联式 ................................................................ 22
2.3 热泵循环效性能的影响因素分析 .................................................................. 22
2.3.1 热泵循环的性能系数 COP ....................................................................... 22
2.3.2 最优高压侧压力的计算 ............................................................................ 24
2.4 本章结论 .......................................................................................................... 25
第三章 蒸发器的实验研究 ....................................................................................... 26
V
3.1 蒸发器结构 ...................................................................................................... 26
3.2 试验台介绍 ...................................................................................................... 27
3.2.1 试验台原理图 ............................................................................................ 28
3.2.2 试验台主要部件介绍 ................................................................................ 29
3.3 实验台辅助设备 .............................................................................................. 31
3.3.1 外部环境 .................................................................................................... 31
3.3.2 温度和压力的测量 .................................................................................... 32
3.3.3 流量测定 .................................................................................................... 33
3.3.4 数据采集系统 ............................................................................................ 33
3.4 实验数据理论分析 .......................................................................................... 34
3.4.1 制冷剂侧沸腾换热系数 ............................................................................ 34
3.4.2 空气侧的换热 ............................................................................................ 37
3.5 结果分析 .......................................................................................................... 41
3.5.1 对制冷剂侧换热系数、管内压降的影响 ................................................ 41
3.5.2 对蒸发器侧换热量的影响 ........................................................................ 43
3.5.3 对系统性能系数的影响 ............................................................................ 44
3.6 本章结论 .......................................................................................................... 45
第四章 结霜工况下蒸发器的研究 ........................................................................... 47
4.1 理论分析 .......................................................................................................... 47
4.1.1 霜的形成机理 ............................................................................................ 47
4.1.2 结霜对系统参数的影响 ............................................................................ 47
4.2 实验分析 .......................................................................................................... 50
4.2.1 外部环境影响因素 .................................................................................... 50
4.2.2 蒸发器性能的影响 .................................................................................... 52
4.3 除霜技术的应用和改进 .................................................................................. 55
4.4 本章结论 .......................................................................................................... 55
VI
第五章 二氧化碳翅片式蒸发器的模拟和优化 ....................................................... 57
5.1 EVAP-COND V3.0 软件说明 ........................................................................ 57
5.1.1 性能的模拟计算功能 ................................................................................ 57
5.1.2 模型的优化设计功能 ................................................................................ 57
5.2 模型的建立 ...................................................................................................... 58
5.2.1 翅片管换热器模拟的建立 ........................................................................ 58
5.2.2 制冷剂流程模型的建立 ............................................................................ 59
5.2.3 模拟计算分析 ............................................................................................ 59
5.2.4 模型优化设计 ............................................................................................ 60
5.3 模拟分析 .......................................................................................................... 61
5.3.1 外部环境对蒸发器性能的影响 ................................................................ 61
5.3.2 制冷剂进口干度对蒸发器性能的影响 .................................................... 61
5.3.3 制冷剂出口过热度对蒸发器性能的影响 ................................................ 62
5.4 本章小结 .......................................................................................................... 63
第六章 结论及展望 ................................................................................................... 64
6.1 结论 .................................................................................................................. 64
6.2 后续工作展望 .................................................................................................. 65
参考文献 ........................................................................................................................ 66
在读期间公开发表的论文和承担科研项目及取得成果 ............................................ 72
致谢 ................................................................................................................................ 73
第一章 绪论
1
第一章
1.1 课题研究背景与意义
1.1.1 二氧化碳制冷剂的发展
19 世纪末~20世纪 30 年代前[1]作为制冷剂 CO2(R744)、氨R717SO2
R764)氯甲烷(R40)等曾被广泛应用,这些工质中除了 CO2之外,其它工作
均具有毒性或可燃性,而 CO2却因其无毒且不燃的特性,在民用和船用制冷等方
面有巨大的优势。在蒸汽压缩系统中采用 CO2作为制冷剂,最初是在 1850 年由美
国人 Alexander Twining 提出,并获得英国专利[2]。新罕布夏州杰斐逊的 Thaddeus
Sobeski Carlincour Lowe,一个曾应用 CO2作为膨胀机制造军用气球的专家,第一
次成功地在商业机中应用 CO2制冷剂[3]
1882 年,Carl von linde 为德国埃森的 F.Krupp 公司设计开发了采用 CO2作制
冷工质的制冷机[4]1884 年,W. Raydt 因为设计出 CO2压缩制冰系统获得了英
国专利,澳大利亚的 J. Harrison 也获得了英国的专利,因他设计的用于制冷的 CO2
装置。
随后,以 CO2作为制冷剂的使用也越来越多,1886 年,德国人 Franz Windhausen
设计的 CO2压缩机获得了英国专利,之后被英国 J&E Hall 公司收购并改进后投入
生产[5]20 世纪 40 年代,CO2压缩机被广泛采用在英国的船上。19 世纪 90 年代,
美国开始将 CO2制冷应用于制冷系统。但用于空调机相对较晚。1919 年前后,CO2
制冷压缩机才广泛应用在舒适性空调中。
CO2制冷也曾达到过很辉煌的程度。CO2制冷剂相对于 NH3SO2的安全性
使它在船舶甲板上和公共建筑中被优先选择。据统计,发展到 1930 年,80%
船舶使用 CO2制冷机。
但相对于其他普通制冷剂[6]CO2系统的使用普遍存在着在制冷能力损失和在
高放热温度下低的 COP 的缺点,特别是在温暖的气候中,这些成了 CO2的劣势,
并由于当时的技术水平比较差,在 1931 年,CFCs 制冷剂以 R12 为代表的制冷剂
工质的出现,以其无毒、不可燃、不爆炸、无刺激性、适中的压力和比较高的制
冷效率, 由此 CO2在安全制冷剂方面的位置很快被取代了,作为制冷剂的 CO2
逐渐不再被使用,1950 年最后一艘使用 CO2制冷机的船只也停止了工作,只有
在制造、贮藏冰淇淋和其他易变质食物等领域 CO2以干冰的形式仍得到广泛应用。
但随着社会的发展,由于 CFCs 制冷剂因其破坏臭氧层,这成为 CFCs 被替代
的首要原因[6],对新的替代工质的要求是:必须对于臭氧层没有破坏;HFC 类工
质因其对臭氧层没有破坏力,成为替代 CFCs 的重要工质,但它们化学性稳定,
二氧化碳热泵热水器蒸发器的研究
2
放后会不断积累,这将最终导致明显的温室效应。因为任何大量人工合成物质排
放到自然界中,都会对环境造成影响,保护环境、实现 CFCs 替代成为全世界共同
关注的问题,在 1985 年的《保护臭氧层的维也纳公约》到 1987年的《蒙特利尔
议定书》以及 1990 年伦敦会议和 1992 年哥本哈根会议对蒙特利尔议定书的修正,
世界范围内的 CFCs 替代进程不断加快;自 1991 6月,我国在修改的《蒙特利
尔修订书》上签字,成为缔约国之一,逐步淘汰消耗臭氧层物质已经成为一项我
国必须承担的国际责任[7]因此,现在一种普遍的观点是采用自然工质。前国际制
冷学会主席,挪威的 G.Lorentzen 1989~1994 年大力提倡使用自然工质,1989
年的国际专利申请中,他设计了跨临界 CO2循环系统,在这个系统中通过节流阀
来控制高压侧压力[8],这对 CO2的研究和推广应用起到了很好的带头作用,从此
CO2制冷装置的研究和应用再次成为全球范围内受重视的热点,寻找新型的制冷工
质替代也成了人们关注的焦点[9]
1.1.2 制冷工质的替代方向
在选择制冷工质时,我们不仅要遵守《蒙特利尔议定书》和《京都议定书》
符合环保的要求,还需综合考虑其安全性、热力性能以及经济性。因此,寻找环
保、高效的制冷工质成为制冷空调行业中共同关注的问题。为了评估各种制冷工
质对臭氧层的消耗能力和对全球温室效应的作用,提出了用消耗臭氧层潜能值
Ozone Depletion Potential简称 ODP 值和全球变暖潜能值(Global Warming
Potential)简称 GWP 值两个指标[10],并在选用制冷剂时须考虑这两个值。表 1-1
为各种制冷剂工质的 ODP 值和 GWP 值。
1-1 主要制冷工质的 ODP 值和 GWP [10]
制冷工质
ODP
GWP
制冷工质
ODP
GWP
R11CFC-11
1.0
1.0
R22HCFC-22
0.04~0.06
0.32~0.37
R12CFC-12
0.9~1.0
2.8~3.4
R123
HCFC-123
0.013~0.022
0.017~0.020
R113(CFC-113)
0.8~0.9
1.3~1.4
HFC-125
0
0.51~0.65
HFC-134a
0
0.24~0.29
HFC-143a
0
0.72~0.76
R410A
0
1.73
R290
0
0
R717
0
0
R744
0
0
注:本表数值部分取自联合国环境署技术方案专家组报告
由此可以看出,制冷工质将来的发展方向主要是[11]一环保型,CHO
N等元素所组合成的绿色天然环保的制冷剂,以其对臭氧层无破坏且不会产生全
球变暖问题,即要求制冷剂的消耗臭氧潜能值ODP和全球变暖潜能值GWP
摘要:

I摘要随着人们生活水平的日益提高,人们的环保意识越来越强,并且对舒适性的要求也越来越高。由于CFCs类制冷工质会对臭氧层的破坏和产生的温室效应等环境问题,人们重新重视自然工质的利用。CO2作为自然工质之一,具有良好的热物性,比传统工质有很大的优势,CO2在很多方面都有很好的应用前景,尤其在热泵方面的应用。采用CO2作为制冷剂的热泵热水器在日本已经广泛使用,但在国内还没有成熟的产品,对CO2作为制冷剂的研究仍处在理论和实验阶段。本课题主要是针对小型CO2热泵热水器进行研究,通过理论与实验相结合的方法对翅片管式蒸发器进行研究,为热泵热水器的实际的应用提供理论依据和实验数据,具有一定的实用价值。本课...

展开>> 收起<<
CO2热泵热水器中翅片管式蒸发器的研究.pdf

共77页,预览8页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:77 页 大小:3.46MB 格式:PDF 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 77
客服
关注