地源热泵地埋管换热器传热相关性研究

3.0 牛悦 2024-11-11 6 4 2.8MB 89 页 15积分
侵权投诉
随着环境问题的日益突出和人类对于能源需求量的增大,地源热泵空调系统
以其高效节能、运行安全可靠、结构简单、对环境无污染以及使用范围广泛等优点
成为二十一世纪最引人关注的空调技术之一。地埋管换热器是地源热泵系统与土
壤,地下水或地表水进行热交换的装置,是地源热泵系统的核心部件,其性能好
坏直接影响地源热泵系统的性能优劣。因此对地源热泵地埋管换热器的传热相关
性研究至关重要。
本文首先介绍了地源热泵系统的组成及原理,主要包括模块式地源热泵机组、
循环水泵、水管环路、水系统控制箱和室内温控器等;总结了国内外地埋管换热器
传热研究进展以及地埋管换热器传热分析方法。然后通过土壤热响应测试实例,
现场测试确定测试场地内土壤的基本参数,包括土壤的原始地温,地埋管换热器
单位长度的平均放热量及取热量,岩土热物性参数,包括地埋管换热器深度范围
内各个岩土层以及回填材料的热物性参数等;并根据土壤热响应测试得到的数据
分析地埋管换热器的传热特性,建立了地源热泵地埋管换热器数学物理模型,利
FLUENT 软件对地埋管换热器多年使用情况进行数值模拟,研究其传热相干性
的影响情况。通过对地源热泵地埋管换热器传热性能实测与多年非连续运行工况
的模拟结果比较,得到不同地埋管间距周围的土壤温度沿径向的变化规律及地埋
管相互间传热相干性的影响规律。
结果显示,较大的埋管间距不仅可以保证热泵系统全年以较高的换热效率
行,还可使土壤全年温度波动值较小,对土壤自身物性影响较小,换热越有利
但应合理利用土地资源,根据当地气候条件、土壤性质及建筑环境的实际情况
合理设计地埋管换热器埋管间距。同时确定针对长三角地埋管换热器每延米换
50W/m 左右的地区,最埋管间距为 4.3m对于其地区可根据具体地质条件
通过模拟数据拟合冷天数与埋管间距线性关线,可根据不同
地区供冷天确定 U 型埋管换热器的管间距。
键词:地源热泵 地埋管间距 传热相干性 多年非连续运行 
壤热响应测试 数值模拟
ABSTRACT
Along with the environmental problem getting obvious and the increasing energy
demands of human beings, Ground source heat pump air conditioning system has
become one of the most compelling air conditioning technologies in the 21st century
with its advantages of high efficiency and energy saving, safe and reliable operation,
simple structure, no pollution to the environment and a widely range of using etc.
Buried pipe heat exchanger is the device for heating exchanging among ground source
heat pump system, the soil, groundwater and surface water, and it is the core
components of Ground source heat pump system. Its performance has direct influence
on the quality of ground source heat pump system. As a result, it is significant for the
heat transfer correlation research of ground source heat pump buried pipe heat
exchanger.
The thesis firstly introduces the composition and principle of ground source heat
pump system, mainly including modular ground source heat pump units, circulating
water pump, water loop, water system control box and indoor temperature controller
etc; secondly, the research progress and heat transfer analysis methods of buried pipe
heat exchanger at home and abroad be summarized. Then through the soil thermal
response test case, it determines the soil basic parameters about the test field, including
the original soil temperature, buried pipe heat exchanger of unit length average heat
exchange amount, the thermal and physical properties of geotechnical parameters,
including the depth range of buried pipe heat exchanger with each rock layer and
backfill material parameters etc. According to the soil thermal response test data, it
analysis the heat transfers characteristics of buried pipe heat exchanger and established
the ground source heat pump buried pipe heat exchanger mathematical and physical
model be .lastly, it does numerical simulation through the several years` using
conditions with the FLUENT software, so that to study the influence of the heat transfer
coherence. Based on the results between the numerical simulation on several years`
non-continuous running condition and measurements of the buried tube heat transfer
performance on the radial, it gets the changing law of the soil temperature around the
different buried pump space along radial direction and the effecting law of the heat
transfer coherence effects among the buried pumps.
The results show that large buried pipe spacing not only can ensure the heat pump
system with higher thermal efficiency in operation, but also can make the soil
temperature fluctuation value smaller, the smaller soil physical properties of their
influence, with the better heat transfer. But should be rational utilization of land
resources, according to the local climate condition, soil properties and the actual
situation of construction environment, design the buried pipe heat exchanger buried pipe
spacing reasonable. At the same time to determine the long triangle buried pipe heat
exchanger heat per linear meter in 50 W/m, the best buried pipe spacing is 4.3 m. For
other areas the specific geological conditions, through the simulation data fitting out
cooling days and buried pipe spacing of the linear relationship curve. According to
different region for cooling days to make sure the two tube U buried pipe heat
exchanger spacing.
Key WordGSHPBuried Tube Heat SpaceCoherence Effects
Discontinuous Operation for Years geo-thermal response
testNumerical Simulation
ABSTRACT
绪论......................................................................................................................1
1.1 研究背景意义.....................................................................................................1
1.2 地源热泵系统原理简.........................................................................................2
1.2.1 地源热泵系统的组成.......................................................................................2
1.2.2 地源热泵系统的原理.......................................................................................2
1.2 研究进展.................................................................................................................3
1.2.1 国外研究进展...................................................................................................3
1.2.2 国内研究进展...................................................................................................4
1.2.3 地埋管换热器传热分析方法...........................................................................5
1.3 本文的主要研究内.............................................................................................9
土壤热系数的确定及热响应测试实........................................................11
2.1 地埋管换热器热响应测试的意义...........................................................11
2.1.1 热响应测试的意义.........................................................................................11
2.1.2 热响应测试的.........................................................................................11
2.2 测试实验概.......................................................................................................12
2.3 测试参考标准.......................................................................................................12
2.4 土壤热响应测试实...........................................................................................12
2.4.1 热响应测试实验目.....................................................................................12
2.4.2 热响应测试实原理.....................................................................................12
2.4.3 测试系统.........................................................................................................13
2.5 测试方...............................................................................................................15
2.5.1 测试.............................................................................................16
2.5.2 岩土始温度测试方.................................................................................16
2.5.3 土壤热物性测试方.....................................................................................16
2.5.4 具体测试进度.................................................................................................17
2.6 地下土壤的地质构成...........................................................................................17
2.7 土壤始平均温度...............................................................................................18
2.8 岩土热物性参数计...........................................................................................18
2.8.1 数据记录.........................................................................................................18
2.8.2 岩土热物性参数计.....................................................................................19
2.8.3 岩土热物性计算举.....................................................................................22
2.8.4 结果.................................................................................................23
2.9 测试结...............................................................................................................24
2.9.1 土壤始温度.................................................................................................24
2.9.3 土壤换热器热交换量.....................................................................................24
2.10 小结.............................................................................................................24
地源热泵相关性全年性能分析、数值模拟研究及实验验........................25
3.1 地源热泵空调系统相关性及热平研究...........................................................25
3.1.1 地源热泵系统土壤热平影响因分析.............................................25
3.1.2 地埋管换热器换热效果影响因分析.........................................................26
3.2 地下换热器数值求模型...................................................................................29
3.2.1 CFD 数值模拟软件简介................................................................................29
3.2.2 物理模型.........................................................................................................30
3.2.3 数学模型.........................................................................................................31
3.2.4 网格划.........................................................................................................32
3.2.5 边界条件及 FLUENT 的求设置............................................................33
3.3 地源热泵的全年性能模拟结果分析...................................................................35
3.3.1 夏季循环地埋管换热器换热性能模拟.................................................36
3.3.2 冬季制热循环地埋管换热器换热性能模拟.................................................43
3.3.3 地源热泵空调系统全年非连续运行地埋管换热器换热性能模拟分析.....48
3.3.4 地源热泵空调系统多年运行地埋管换热器换热性能模拟.........................52
3.4 模型的实验验...................................................................................................62
3.4.1 验概.........................................................................................................62
3.4.2 验目.........................................................................................................62
3.4.3 模拟结果与实测结果比较分析.....................................................................62
3.5 小结...............................................................................................................64
第四章 总结与展........................................................................................................65
4.1 全文总结...............................................................................................................65
4.2 体会和展...........................................................................................................66
.........................................................................................................................67
绪论
第一章
1.1 研究背景意义
地热是一再生的自然能源,壳中蕴藏地热能,
统能源越匮乏地热能的利用在许多国家已得到了相当的。地
热泵中央空调系统利用了地面浅层地热资空调系统热源,进
供冷供热的。地源地表层地热资源,包括地下水、河流湖泊以及地表土壤
吸收太阳能、地热能后而蕴藏低品位热能。地表层可以吸收 47%太阳能,相当
于人类每年利用能量的 500 ,是一个大的太阳热器。环境
资源制,量大广无种近地表源,使得
地源成为一再生清洁能源。
地源热泵中央空调系统利用水与地源下水、土壤或地表进行
热交换的设冬季把的热量,此时地源为
热泵夏季内热放到地下水、土壤或地表水,此
地源地源热泵空调系统入少量的位能源,可实低品
热能向高锅炉供热系统相比较,锅炉供
90%,或 70%90%料内使地源
泵空调系统要比电锅炉加系统省电65%,比能量
50%地源热泵空调系统的热源温度一916℃,全年较为定,
COP 3.56.3,比传统空气源热泵高出 40%左右,运行用仅为
空调的。地源热泵中央空调系统的污染物比空气源热泵减少 40%
,比电供暖减少 70%果结合其节能措施减排效果会更明显。
为一先进的空调技术,地源热泵经在范围取得的进展和应用
并取得了果和经济。地源热泵系统是二十世纪最引人关
的空调技术之一,被列源之于地源热中央空调系统结构
简单、运行高效节能并且稳定可靠、维护费对环境无污染、使用范围广泛等优
[1]来在我现出了好的广趋势。国外70 代已经开始研究和
展地源热泵技术。目前,地源热商品在美国等家已
在我则处起步阶段。但是,随着地源热泵技术步发展,目前对地源热
大多从稳定传热模型、壤源大热源的角度进行分析,对地源
泵相关的土壤源全年的温度变化及性指标变化研究,然土壤源的温度
化和性能变化直接关系到地源热泵的寿得研究。为了使其好地发挥
减排效应,对源热泵空调系统传热相关性研究,并对影响地源热泵运行性
的相关因进行地源热泵的应广有着重大经济效益会意
并可为地源热泵设计应用提供依据。
1.2 地源热泵系统原理简
1.2.1 地源热泵系统的组成¾
地源热泵空调机组是一供冷机组。机组轴套管式水/
冷剂热交换器、封闭压缩机、力膨胀阀通换向空气侧盘管、机、空气
器、安全控制装置等组成。地源热泵空调机组本身有一的制制热
装置,可直接用于空调系统供冷热。地源热泵系统是模块式地源热泵机组、
1
地源热泵地埋管换热器传热相关性研究
循环水泵、水管环路、水系统控制箱和室内温控器等组成的。¾系统设计简单、灵活
安装快速机组组装好并自温度控制装置,现场工作只低压风管、
气连接装置和不需要保温的水管的连接。管、管或料管。维修
便快捷,机组结构坚固寿命地源热泵机组的率系数 COP 3.5
6.31千瓦电输入,有三六千瓦出的高效率。
1.2.2 地源热泵系统的原理 ¾
地源热泵系统是一种由路水系统连接筑物地源热泵机组
构成的封闭环路的中央空调系统,如图 1-1 示。
1-1 地源热泵空调系统原理
冬季,地源热泵系统通地埋大地收集自然热量环路
循环热量室内源热泵系动的压缩机和热交换器这些大地
的能量集中,并以较高的温度放到室内。
夏季,此运行程序,地源热泵系将从室内出的热量
为大地所吸收,使房屋得到供冷1-2 为地源热泵地埋管换热器冬夏季热交换示
意图¾
2
绪论
3
地源热泵地埋管换热器传热相关性研究
1-2 热交换示意图
1.2 研究进展
1.2.1 国外研究进展
早期的地源热泵研究主要集中于土壤的传热性质、埋管换热器式、埋管的影
响因等方1948 H.J.Plass L.R.Ingersoll [2]地源热泵单管地埋管换热器的
传热简化线热源型分析求,此于使用小管径埋管,长时间运行
地源热泵空调系统好。并于 20 世纪 50 代将线热源理应用于地埋管换热
器的计Hart Couvillion 模型[3]基于 Kelvin 线源理出了径的概念
为 ,α(m2/s)τ(s)1959
H.S.Carslaw J.C.Jaeger[4]进了线热源理热源理这种对大
管径埋管和时间运行的地源热泵系统也适用。
入上世纪 80 后,对多介质和土壤性质的研究不,出现了建立
能量和质量守恒础上的同时考虑传热和传质的合模型。1981 J.Y.Baladi
D.L.Ayers[5]测量了土壤的传热,建立了一模型模拟地埋换热器
土壤的传热传质过1985 V.C.Mei C.J.Emersonu[6]建立了水平地埋单管与
土壤传热数学模型,考虑了管周围土壤结的影响。1986 M.Prat[7]分析了封闭
和多介质系统的传热传建立模型进行数值同年
V.C.Mei C.J.Emerson[8],对个不同深度、不同回填土的直地埋 U型管进行研
究,用等效方法U型管等效为热源,考虑回填土的影响,但是
土壤水分的影响。
90 ,针对地源热泵地埋管热器的换热机理、化换热以及换热
匹配等方的研然是地源热泵系统的研究热此时的研多地关注
系统与地埋管换热器、地埋管换热器与土壤之间相互合的传热、传质模型,从而
可以换热实情况[9]同时材料
通过用热物性好的回填材料埋管换热土壤为进
优化系统,有关地管换热器与地源热泵系统的匹配参数的研在开
1991 P.K.Yin G.E.Hite[10]值计的方研究湿
换热器表的对换热。1992 J.Sheridan[11]结合实测量的多介质的传热建
立数学模型,研究差造成的传热、传质的合过1995 Yian Go
Dennis L.0.Neal[12]U管等效成热源,用分析方法求传热,得
到了1997 Steve P.Rottmaye 等人[13]在圆柱下利用标网格形
U型地埋管换热器单建立数学模型计这种方法是一
等效法,与等热源法相比,动和角度方向
传热。2001 年,Bernier[14]原理的基础上进一利用负荷累积的方法将改
进的圆柱源理应用的长源热泵系统模拟,并取得了
的结果。
1.2.2 国内研究进展
国对地源热泵地埋管换热器研究从上世纪 80 代开始,其技术广过
先实后理。研究过基本可以分为阶段:
从上世纪 80 代初开始为阶段的研究过大学[15][16]
4
摘要:

摘要随着环境问题的日益突出和人类对于能源需求量的增大,地源热泵空调系统以其高效节能、运行安全可靠、结构简单、对环境无污染以及使用范围广泛等优点成为二十一世纪最引人关注的空调技术之一。地埋管换热器是地源热泵系统与土壤,地下水或地表水进行热交换的装置,是地源热泵系统的核心部件,其性能好坏直接影响地源热泵系统的性能优劣。因此对地源热泵地埋管换热器的传热相关性研究至关重要。本文首先介绍了地源热泵系统的组成及原理,主要包括模块式地源热泵机组、循环水泵、水管环路、水系统控制箱和室内温控器等;总结了国内外地埋管换热器传热研究进展以及地埋管换热器传热分析方法。然后通过土壤热响应测试实例,现场测试确定测试场地内...

展开>> 收起<<
地源热泵地埋管换热器传热相关性研究.doc

共89页,预览9页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:89 页 大小:2.8MB 格式:DOC 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 89
客服
关注