圆形静压空气止推轴承静特性研究

VIP免费
3.0 赵德峰 2024-11-11 4 4 3.26MB 89 页 15积分
侵权投诉
摘要
气体静压轴承由于具有超高速、高精度、低摩擦和无污染等的优点而广泛运
用在航天航空、高精度加工平台和高精密测量仪器等领域中。其中气体静压止推
轴承更是因为其结构简单,特点突出而应用广泛。气体从外部压力源经供气孔流
入气腔,之后经过轴承气膜间隙流出轴承到达外部环境。因此,气腔中的气体压
力取决于节流器的流体阻抗和气膜间隙的流体阻抗,进而影响着轴承的静特性。
因此要提高气体轴承的静、动特性,必须从节流器的节流原理和作用效果出发,
因此这也成为了流体润滑理论和气体轴承开发设计研究的重点内容之一。
本文首先从两种不同类型节流器——环面节流和小孔节流出发,采用 CFD
体软件对这两种不同节流器类型的单供气孔气体静压止推轴承进行数值仿真,得
到流场特性、压力分布和轴承静特性。进一步总结得到两种节流器类型轴承的结
构参数和供气参数对静特性的影响。
然后针对多供气孔小孔节流器,从流体润滑理论中的节流原理出发,将其分
为四种不同的节流类型,同时提出了分别满足这四种类型的结构参数要求。从气
腔的结构入手,分析了气腔深度和直径对轴承气膜内流场、压力分布和静特性的
影响规律。并针对供气孔的位置即其分布圆直径对轴承特性的影响进行了分析。
研究结果可以为不同的使用场合和需求,选择合理的节流类型及其结构参数和供
气参数提供参考。
综合本文的内容和结果表明,采用 CFD 数值模拟对于气体静压止推轴承的研
究具有一定的参考意义。在结构上从节流器入手,在流动上从压力分布和流场特
性入手,可以为特定场合和特定要求的气体静压止推轴承的选用从结构参数和供
气参数上提供一定的参考。
关键词:气体轴承 节流类型 环面节流 小孔节流 压力分布 轴承静特性
ABSTRACT
Since it has many advantages of ultra high-speed, high precision, low friction and
non-polluting, the aerostatic bearing has widely used in aerospace industry, high
precision processing platform and high precision measuring instruments and other fields
like this. So the aerostatic thrust bearing has a wide range of applications because of its
simple structure and prominent features. Gas through a supply hole which is supplied by
an external pressure source into the gas chamber, then flow into the bearing gas gap,
finally outflow the bearing to the ambient atmosphere. Therefore, gas pressure in the
chamber and gas gap depends on the fluid impedance of restrictor and bearing clearance.
Accordingly, affects its static characteristics. In order to improve the static and dynamic
characteristics of gas bearing should set off from the throttling principle and effect. This
is also the main important content of fluid lubrication theory and research and
development of gas bearing.
This paper presents two types of orifice——inherent-compensated and
orifice-compensated. Commercial computational fluid dynamics software Fluent is used
to simulate this two types aerostatic thrust bearings, then their respective flow field,
pressure distribution and the static performances can be obtained. The influence of main
structure parameters and gas supply parameters on static characteristics is investigated
and summarized.
Next, classified the multi-orifice-compensated aerostatic thrust bearing into four
types based on the theory of fluid lubrication. the structure parameters were put forward
to meet certain requirements. Start with the gas chamber structure, analyzed the
influences of depth of chamber and diameter of chamber on the flow field, pressure
distribution and the static performances. Finally, the influences of location of supply
hole on the static performance have been discussed too. In this way, there are many
optional and proper parameters can be selected to optimize the characteristics on
different occasions and needs.
According to the above contents, the results have some reference significance to
engineering research and design on aerostatic bearing based on CFD numerical
simulation. In the structure, begin with restrictor. In the flow, begin with pressure
distribution and flow field characteristics. But above all, from this paper can be
summarized a method for selection of structure parameters and air supply parameters
about aerostatic thrust bearing in specific situations and applications.
Keyword: aerostatic thrust bearing, throttling type, inherent-compensated,
orifice-compensated, pressure distribution, static characteristic
目录
摘要
ABSTRACT
目录
第一章绪论 ...................................................................................................................... 1
1.1 研究背景与意义 .................................................................................................. 1
1.2 气体轴承的介绍 .................................................................................................. 3
1.2.1 气体轴承分类 .............................................................................................. 3
1.2.2 气体静压支承组成 ...................................................................................... 5
1.2.3 气体静压轴承气源 ...................................................................................... 5
1.3 气体轴承的研究现状 .......................................................................................... 5
1.3.1 气体静压止推轴承国内外研究现状 .......................................................... 6
1.3.2 气体静压止推轴承的发展趋势 .................................................................. 8
1.4 本文主要研究内容 .............................................................................................. 9
第二章气体静压止推轴承基本概念与理论 ................................................................ 10
2.1 气体轴承基本方程式—Reynolds 润滑方程 .................................................... 10
2.2 惯性力的影响 .................................................................................................... 12
2.3 边界条件 ............................................................................................................ 12
2.3.1 速度边界条件 ............................................................................................ 12
2.3.2 压力边界条件 ............................................................................................ 13
2.3.3 流量边界条件 ............................................................................................ 13
2.3.4 对称边界条件 ............................................................................................ 14
2.4 正方形气体静压止推轴承的性能计算 ............................................................ 15
2.4.1 雷诺方程的差分离散 ................................................................................ 15
2.4.2 轴承静特性参数求解 ................................................................................ 17
2.4.3 正方形气体静压止推轴承实例分析与计算结果 .................................... 18
2.5 本章小结 ............................................................................................................ 20
第三章两种节流类型气体静压止推轴承性能研究 .................................................... 21
3.1 节流器介绍 ........................................................................................................ 21
3.1.1 节流器原理 ................................................................................................ 21
3.1.2 节流器类型 ................................................................................................ 22
3.2 两种节流类型轴承数值模拟 ............................................................................ 24
3.2.1 轴承的计算模型与边界条件 .................................................................... 24
3.3 两种节流类型轴承数值模拟结果 .................................................................... 26
3.3.1 两种节流类型压力场 ................................................................................ 26
3.3.2 环面节流结果分析 .................................................................................... 27
3.3.3 小孔节流结果分析 .................................................................................... 30
3.4 两种节流类型轴承静特性结果 ........................................................................ 33
3.4.1 供气孔直径对轴承静特性影响 ............................................................... 33
3.4.2 供气压力对轴承静特性影响 .................................................................... 35
3.4.3 轴承直径对轴承静特性影响 .................................................................... 36
3.4.4 气腔直径和气腔深度对小孔节流轴承静特性影响 ................................ 38
3.5 考虑可压缩性对轴承静特性的影响分析 ........................................................ 39
3.5.1 两种节流类型压力场 ................................................................................ 40
3.5.2 考虑可压缩性环面节流结果分析 ............................................................ 40
3.5.3 考虑可压缩性小孔节流结果分析 ............................................................ 45
3.5.4 考虑可压缩性与不可压轴承静特性比较 ................................................ 48
3.6 本章小结 ............................................................................................................ 49
第四章多供气孔小孔节流止推轴承静特性分析 ........................................................ 51
4.1 小孔节流类型的节流划分 ................................................................................ 51
4.2 多供气孔小孔节流止推轴承模型及网格划分 ................................................ 55
4.2.1 多供气孔轴承计算模型 ............................................................................ 55
4.2.2 网格划分 .................................................................................................... 56
4.2.3 边界条件设置及数值计算方法 ................................................................ 57
4.3 第一种小孔节流类型静特性分析 .................................................................... 57
4.3.1 气腔深度对静特性影响分析 .................................................................... 57
4.3.2 气腔直径对静特性影响分析 ................................................................... 57
4.4 第二种小孔节流类型静特性分析 .................................................................... 61
4.4.1 气腔深度对静特性影响分析 .................................................................... 61
4.4.2 气腔直径对静特性影响分析 ................................................................... 63
4.5 第三种小孔节流类型静特性分析 .................................................................... 65
4.5.1 气腔深度对静特性影响分析 .................................................................... 65
4.5.2 气腔直径对静特性影响分析 ................................................................... 67
4.6 第四种小孔节流类型静特性分析 .................................................................... 69
4.6.1 气腔深度对静特性影响分析 .................................................................... 69
4.6.2 气腔直径对静特性影响分析 .................................................................... 71
4.7 小孔节流位置对静特性影响分析 .................................................................... 73
4.8 本章小结 ............................................................................................................ 75
第五章结论与展望 ........................................................................................................ 76
5.1 结论 .................................................................................................................... 76
5.2 展望 .................................................................................................................... 76
参考文献 ........................................................................................................................ 78
在读期间公开发表的论文和承担科研项目 ................................................................ 84
.发表论文 ............................................................................................................. 84
.参加科研项目 ..................................................................................................... 84
致谢 ................................................................................................................................ 85
摘要:

摘要气体静压轴承由于具有超高速、高精度、低摩擦和无污染等的优点而广泛运用在航天航空、高精度加工平台和高精密测量仪器等领域中。其中气体静压止推轴承更是因为其结构简单,特点突出而应用广泛。气体从外部压力源经供气孔流入气腔,之后经过轴承气膜间隙流出轴承到达外部环境。因此,气腔中的气体压力取决于节流器的流体阻抗和气膜间隙的流体阻抗,进而影响着轴承的静特性。因此要提高气体轴承的静、动特性,必须从节流器的节流原理和作用效果出发,因此这也成为了流体润滑理论和气体轴承开发设计研究的重点内容之一。本文首先从两种不同类型节流器——环面节流和小孔节流出发,采用CFD流体软件对这两种不同节流器类型的单供气孔气体静压止...

展开>> 收起<<
圆形静压空气止推轴承静特性研究.pdf

共89页,预览9页

还剩页未读, 继续阅读

作者:赵德峰 分类:高等教育资料 价格:15积分 属性:89 页 大小:3.26MB 格式:PDF 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 89
客服
关注