大口径长工作距物镜设计与质量稳定性研究

VIP免费
3.0 牛悦 2024-11-19 5 4 3.63MB 61 页 15积分
侵权投诉
摘要
通信是信息基础设施的重要组成部分,随着当今通信技术的不断飞速的发
展,光通信技术的运用也愈加明显。光纤通信以其独特的优势被越来越广泛的应
用。在光纤传输的过程中光纤的熔接是必不可少的。本文设计了一款物镜镜头应
用于光纤熔接系统中,正是本着提高光纤熔接的同轴性,保证光传输质量这一出
发点。
本文设计的物镜镜头有着大口径、长工作距、高成像精度等特点。采用 625nm
的红光为主光源。物距大于 11.7mm,共轭距为 49mm,放大倍率约为 4.3 倍。物
方数值孔径为 0.3,视场直径大小为 1mm。有良好的质量稳定性,360 度旋转
称。
根据实际光纤检测系统的参数和结构要求,本文详细的介绍了物镜镜头的整
个设计过程。包括最初的理论分析、设计方法选择、初始结构选择、参数的理论
计算、理想镜头组的设计与建模、实际镜头材料的选择、实际镜头的参数计算、
系统的成像质量评价、镜头组的初步自动优化、镜头组套模板、镜头组系统的公
差分析、最终镜头结构的确定及成像结果模拟成像结果模拟这些主要内容。其中
镜头的光学设计和公差分析为全文重点介绍也是设计中比较重要的部分。
本文采用光学设计软件 ZEMAX 为主要的辅助设计与镜头优化模拟及质量评
价的工具。详细的介绍了所使用的功能和整个系统包括光源、光纤、镜头组和接
收器的建模方法和过程。最终将实际生产的物镜镜头进行测试与设计模拟的结果
进行了对比,肯定了设计的正确性。
关键词: 镜头设计 光纤检测 像质评价 建模模拟 公差分析
ABSTRACT
Communications technology is an important part of the information
infrastructure. With the development of modern communications technology, the use
of optical communication are are more and more obvious. With its unique advantages,
optical fiber are increasingly wide application. In the process of optic fibre
transmission the optical fiber fusion is absolutely essential. In the paper we design a
group of object lens used in the fiber fusion system to make sure the coaxality of the
fiber fusion and the quality of the optical communication.
The object lens in this paper have the distinguishing feature like big aperture,
long working distance, high accuracy of the imaging and so on. Using the rad light
with wavelength is 625nm as the main light source. Object distance of the lens is
longer than 11.7mm, conjugate distance is 49mm and the magnification is about 4.3.
The NA in the object space is 0.3, the diame-field of view is 1mm. The lens have
good quality stability and rotational symmetry in 360 degrees.
On the basis of real fiber inspection system and structure require, the paper
illuminates the details about the design process of the object lenses. Including the
primary coverages like original theoretical analysis, design method choice, initial
structure choose, parameter theoretical calculation, the design and modeling of the
ideal lens, the material selection of the practical lens, parameter theoretical calculation
of the practical lens, the imaging quality evaluation, the group's preliminary automatic
optimization, the lens group set of templates, the tolerance analysis, ultimately
determine the structure of the lens, the simulation of imaging results, and so on. The
optical design and tolerance analysis are the most important parts. They will be
particular introduced.
Software ZEMAX is used as a main tool in the paper to supplementary designing,
optimizating lens and estimating the quality of the system. Introducing about the
functions and the modeling method and process about the light source, fiber, lens and
receiver in details. Eventually testing the actual production lens and comparing the
outcomes with the results of theoretical calculation. Finally confirming the accuracy
of design.
Key Words: lens design, fiber detection, image quality assessment,
modeling simulation, tolerance analysis.
目 录
中文摘要
ABSTRACT
第一章 绪论······················································································· 1
§1.1 课题研究的来源和意义······························································ 1
§1.2 计算机辅助物镜设计技术的发展水平············································ 2
§1.3 本论文的主要内容····································································3
第二章 光纤成像物镜的参数要求···························································· 4
§2.1 光纤纤芯检测系统的基本参数····················································· 4
§2.2 光学物镜技术要求···································································· 4
§2.3 系统的成像要求和物镜像差························································ 5
§2.4 ZEMAX 软件中对镜头系统的评价方式··········································· 6
§2.5 本章小结················································································ 9
第三章 物镜镜头组的初步光学设计······················································· 10
§3.1 镜头组初始结构设计································································10
§3.1.1 设计的基本方法································································ 10
§3.1.2 镜头组的初步理论计算······················································· 11
§3.2 理想镜头组的设计···································································13
§3.2.1 理想镜头组的参数计算······················································· 13
§3.2.2 理想镜头组的建模····························································· 14
§3.3 实际镜头组的初始参数设定·······················································17
§3.4 镜头组的优化·········································································18
§3.4.1 优化前镜头组的初始结构···················································· 18
§3.4.2 理想镜头组的建模····························································· 20
§3.4.3 镜头组的优化结果····························································· 23
§3.5 本章小结··············································································· 27
第四章 物镜镜头成像结果仿真及结构调整·············································· 28
§4.1 系统在 ZEMAX 中的建模·····························································28
§4.1.1 物镜组的建模····································································28
§4.1.2 光源的建模·······································································29
§4.1.3 接收器的建模····································································30
§4.1.4 光纤的建模·······································································31
§4.2 系统的仿真结果······································································33
§4.3 系统结构的调整······································································34
§4.4 本章小结··············································································· 36
第五章 物镜镜头的公差分析与最终结果的确定········································ 37
§5.1 物镜镜头的套样版···································································37
§5.2 物镜镜头的公差分析································································38
§5.3 物镜镜头的最终结构确定··························································44
§5.4 本章小结··············································································· 48
第六章 实际生产镜头的测试结果·························································· 50
§6.1 实际生产镜头的结构································································50
§6.2 实际生产镜头的测试结果··························································51
第七章 总结与展望·············································································52
参考文献····························································································55
在读期间公开发表的论文和承担科研项目及取得成果·································· 58
致谢·································································································· 59
第一章 绪论
1
第一章 绪论
§1.1 课题来源及意义[1]
通信是信息基础设施的重要组成部分,随着当今通信技术的不断飞速的发
展,光通信技术的运用也愈加明显。光通信是一种以光为载体的通信方式,其中,
光纤通信是光通信中最重要的组成部分,相对于其他通信方式而言,光纤通信具
有许多独特的优点:
1.为 2.5Gbit/s
10Gbit/s,采用外调制技术速率可达到 40Gbit/s;
2.损耗小、中继距离长,单模光纤传输损耗约为 0.2dB/Km~0.5dB/Km 甚至
更小,也因此,光纤的中继距离比同轴电缆的中继距离长得多;
3.重量轻、体积小;
4.抗电磁干扰性能好;
5.泄露小、保密性好;
6.节约金属材料等。
光纤的传输实现了远距离、高速、大容量等特点,因此在现实生活中有着广
泛而深远的应用:
1.通信网,包括全球通信网、各种专用通信网以及特殊通信网络;
2.光纤以太网、路由器间的光纤传输;
3.有线电视网和各种工业自动控制和监控系统;
4.综合业务光纤接入网等。
光纤作为光纤通信系统中光信号的传输介质,其性质影响整个系统的容量和
性能。光纤连接在光纤通信过程中势必不可少的,光纤连接一般有两种方式,
是采用专用的光纤连接器,通常用于光发送机、接收机获其他仪表以光纤的连接,
这种连接是活动的、可拆装的。二是熔接连接的方法,一般光缆长度为 1.5~2 Km,
为了满足远距离的传输,通常需要进行两段光纤之间的连接,这种连接是固定的
永久的。光纤的熔接质量的好坏将会直接影响到光纤通信系统的通信质量。最影
响熔接质量的是光纤纤芯的同轴度,光纤熔接技术中可以通过设备检测来准确判
断光纤纤芯位置,从而有效提高光纤的熔接质量。本课题中介绍的就是应用在检
测光纤纤芯位置的系统中的大口径长工作距物镜。
根据社会生产需要,并结合实际,对此类物镜的要求基本有以下几个方面:
1.相对较长的工作距,工作距大于物镜焦距;
2.整体长度短;
3.一定的放大率,高成像质量;
大口径长工作距物镜设计与质量稳定性研究
2
4.由于所检测物体的特殊性,因此对镜头稳定性要求较高;
5.对制造和安装误差的敏感性小。
本课题中介绍了纤芯监测系统中所使用的 4 倍放大率大口径长工作距物
的设计及系统的稳定性分析。应用此物镜的系统能提高光纤熔接的准确性,具有
很高的实际使用和生产价值。同时此物镜可以广泛的应用于对光纤检测和其他成
像的研究中。课题中使用的新型的设计方法也显得尤为重要,具有很高的实用价
值和指导意义。
§1.2 计算机辅助物镜设计技术的发展水平[2~7]
光学设计在近些年有了前所未有的飞速发展,并在各个领域崭露头角,得到
广泛的应用。随着光学设计在生产生活中重要性的逐步提高和计算机软件技术的
飞速发展,许多专业的光学设计软件应运而生。ZEMAX、CODE V、LightTools、
OSLO、LENSVIEW、ASAP、TRACEPRO、TFCALC 等等。这些光学设计件的现大
大推动了光学设计的发展,使以往只能靠大量繁琐的手工计算和经验分析的光学
设计方式被快速的计算机计算、简便互动性的元件安置、可视化的结果模拟分析
所取代。本课题中所使用到的光学设计软件是 ZEMAX。
ZEMAX 是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与
照明系统的照度分析,也可建立反射、折射、绕射等光学模型,并结合优化,
差等分析功能,是套可以运算序列 Sequential 及非序列 Non-Sequential 的软件。
这款软件在光学设计中被广泛的应用,应用它设计模拟出的镜头和成像结果准确
性可行性都非常强。
就物镜设计方面来说,4 倍物镜虽然放大倍数小但要同时做到长工作距短结
构、并可以对纤芯有良好的成像质量和稳定性是比较困难的。能够设计生产这种
高质量的光纤物镜的大都是国外的大公司,国内虽然也有很多设计的比较好的镜
头,但由于加工制造工艺水平的限制,实际生产的镜头质量与国外产品还存在非
常大的差距。
对于设计方法来说,传统的镜头和光学系统设计非常注重成像结果,极力优
化已得到最小像差的满意结果。可是这种结果往往是非常敏感的理论结果的极限
值,系统中各参数只要稍微变化,结果就会发生非常大的变化。这使得在存在一
定误差的生产制造和装配条件下往往设计模拟效果非常好,但做成实际产品会发
现效果变化非常大。本课题提出一种新颖的设计方法,在考虑成像效果的同时顾
及到生产工艺精度,考虑系统的敏感性和稳定性,找到之间的平衡结构,使得实
际生产与设计达到一致的效果。这种思想在光学设计领域是很有实用价值的。
摘要:

摘要通信是信息基础设施的重要组成部分,随着当今通信技术的不断飞速的发展,光通信技术的运用也愈加明显。光纤通信以其独特的优势被越来越广泛的应用。在光纤传输的过程中光纤的熔接是必不可少的。本文设计了一款物镜镜头应用于光纤熔接系统中,正是本着提高光纤熔接的同轴性,保证光传输质量这一出发点。本文设计的物镜镜头有着大口径、长工作距、高成像精度等特点。采用625nm的红光为主光源。物距大于11.7mm,共轭距为49mm,放大倍率约为4.3倍。物方数值孔径为0.3,视场直径大小为1mm。有良好的质量稳定性,360度旋转对称。根据实际光纤检测系统的参数和结构要求,本文详细的介绍了物镜镜头的整个设计过程。包括最...

展开>> 收起<<
大口径长工作距物镜设计与质量稳定性研究.pdf

共61页,预览7页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:61 页 大小:3.63MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 61
客服
关注